Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Prostate Cancer Methylation Levels Linked to Epigenetic Profiles

By LabMedica International staff writers
Posted on 07 Nov 2019
Prostate cancer is cancer that occurs in the prostate, a small walnut-shaped gland in men that produces the seminal fluid that nourishes and transports sperm. Prostate cancer is one of the most common types of cancer in men.

If a gene necessary for DNA repair is hypermethylated, resulting in deficient DNA repair, DNA damages will accumulate. Increased DNA damage tends to cause increased errors during DNA synthesis, leading to mutations that can give rise to cancer.

An international team of scientists led by the Ontario Institute for Cancer Research (Toronto, ON, Canada) generated new whole-genome germline sequence data for 80 individuals with untreated prostate cancer, analyzing them alongside 161 germline genomes for treatment-naïve prostate cancer patients sequenced for past studies. After validation testing with data from the Cancer Genome Atlas (TGCA) project, which included tumor methylation profiles and exome sequence or single nucleotide polymorphism (SNP) array data generated from blood samples of prostate cancer patient, they settled on a set of almost 7,600 quantitative trait loci in the germline that appeared to influence methylation levels. From those, they narrowed in on 1,178 methylation quantitative trait loci (meQTL) in the genome that seemed to specifically influence DNA methylation levels in tumor tissue.

With chromatin immunoprecipitation sequencing and other analyses on prostate cancer cell lines or tumor samples, the team went on to explore the relationships between tumor meQTLs and other genomic features in the tumor; from histone modifications and chromatin structure to RNA and protein expression levels. They also searched for tumor meQTLs with potential ties to prostate cancer aggressiveness, identifying a suspicious germline locus in the TCERG1L gene as well as a chromosome 14 haplotype that appeared to influence methylation and expression of AKT1. Since altered AKT1 levels have been implicated in prostate cancer relapse risk, they went on to look for potential links to survival in another 101 individuals with prostate cancer, uncovering an apparent rise in relapse risk in those carrying the alternative allele at the AKT1 locus.

The authors concluded that taken together, these data highlight how germline genotypes can modulate the tumor epigenome to contribute to the tumorigenesis of aggressive prostate cancers. This phenomenon may apply to other tumor types, providing a strategy to create robust, minimally invasive biomarkers for the early detection of aggressive disease. The study was published on October 7, 2019, in the journal Nature Medicine.

Related Links:
Ontario Institute for Cancer Research


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.