We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A Needle Biopsy-based Proteogenomics Approach for Cancer Diagnosis

By LabMedica International staff writers
Posted on 04 Feb 2020
Print article
Image: Photomicrograph of cancer cells (Photo courtesy of Baylor College of Medicine)
Image: Photomicrograph of cancer cells (Photo courtesy of Baylor College of Medicine)
A recent report described a proteogenomics approach for cancer diagnosis, which used tissue-sparing needle biopsy specimen processing and micro-scaled analytical proteomics techniques.

Proteogenomics is the field of biological research that utilizes a combination of proteomics, genomics, and transcriptomics to aid in the discovery and identification of peptides. Proteogenomics is used to identify new peptides by comparing mass spectrometry (MS/MS) spectra against a protein database that has been derived from genomic and transcriptomic information. Genomics deals with the genetic code of entire organisms, while transcriptomics deals with the study of RNA sequencing and transcripts. Proteomics utilizes tandem mass spectrometry and liquid chromatography to identify and study the functions of proteins.

A critical limitation in proteogenomics studies has been the requirement for biopsy samples that may exceed the size of sources of this clinically important material. To overcome this problem, investigators at Baylor College of Medicine (Houston, TX, USA) and the Broad Institute of MIT and Harvard (Boston, MA, USA) developed methods to generate high-quality DNA, RNA, and protein for deep-scale DNA and RNA sequencing and proteome and phosphoproteome analysis from a single 14 G core needle sample. Extracts prepared from this type of biopsy material were analyzed using a micro-scaled liquid chromatography-mass spectrometry (LC-MS/MS)-based proteome and phosphoproteome analysis pipeline that required only 25 micrograms of peptide per sample.

To demonstrate the potential of this method, the investigators analyzed core needle biopsies from ERBB2 positive breast cancers before and 48 to 72 hours after initiating neoadjuvant trastuzumab-based chemotherapy.

Results revealed greater suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases associated with pathological complete response, and identified potential causes of treatment resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms including androgen receptor signaling, mucin overexpression, and an inactive immune microenvironment.

"Patients die from cancer because, at a sufficiently fundamental level, we have not been able to work out what kind of cancer we are treating," said senior author Dr. Matthew Ellis, professor of precision medicine at Baylor College of Medicine. "The analysis of proteogenomics data, which combines information on tens of thousands of proteins and genes together using a system developed by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) investigators, provides much more complete details about what is going on in each tumor. However, the application of proteogenomics to both scientific research and cancer diagnosis has been limited by the size of the tissue sample required."

"Importantly, our new methodology includes the analysis of phosphoproteins, which refers to proteins that are activated by the addition of phosphate chemical groups," said Dr. Ellis. "For some cancers, such as ERBB2+ (HER2+) breast cancer, the ability to measure these modifications is critical because they are what drives disease. For the first time, we were able to detect statistically significant reduction of ERBB2 protein phosphorylation after treatment in patients that responded to treatment. We did not see a reduction in this protein for those who did not respond to treatment. In patients that did not respond to treatment, our deep-scale data analyses suggested diverse resistance mechanisms to ERBB2-directed therapeutics that could be addressed with alternative approaches to the ones the patient actually received."

The needle biopsy proteogenomics approach was described in the January 27, 2020, online edition of the journal Nature Communications.

Related Links:
Baylor College of Medicine
Broad Institute of MIT and Harvard


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
LH ELISA
Luteinizing Hormone ELISA
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.