Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A Needle Biopsy-based Proteogenomics Approach for Cancer Diagnosis

By LabMedica International staff writers
Posted on 04 Feb 2020
A recent report described a proteogenomics approach for cancer diagnosis, which used tissue-sparing needle biopsy specimen processing and micro-scaled analytical proteomics techniques.

Proteogenomics is the field of biological research that utilizes a combination of proteomics, genomics, and transcriptomics to aid in the discovery and identification of peptides. Proteogenomics is used to identify new peptides by comparing mass spectrometry (MS/MS) spectra against a protein database that has been derived from genomic and transcriptomic information. Genomics deals with the genetic code of entire organisms, while transcriptomics deals with the study of RNA sequencing and transcripts. Proteomics utilizes tandem mass spectrometry and liquid chromatography to identify and study the functions of proteins.

A critical limitation in proteogenomics studies has been the requirement for biopsy samples that may exceed the size of sources of this clinically important material. To overcome this problem, investigators at Baylor College of Medicine (Houston, TX, USA) and the Broad Institute of MIT and Harvard (Boston, MA, USA) developed methods to generate high-quality DNA, RNA, and protein for deep-scale DNA and RNA sequencing and proteome and phosphoproteome analysis from a single 14 G core needle sample. Extracts prepared from this type of biopsy material were analyzed using a micro-scaled liquid chromatography-mass spectrometry (LC-MS/MS)-based proteome and phosphoproteome analysis pipeline that required only 25 micrograms of peptide per sample.

To demonstrate the potential of this method, the investigators analyzed core needle biopsies from ERBB2 positive breast cancers before and 48 to 72 hours after initiating neoadjuvant trastuzumab-based chemotherapy.

Results revealed greater suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases associated with pathological complete response, and identified potential causes of treatment resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms including androgen receptor signaling, mucin overexpression, and an inactive immune microenvironment.

"Patients die from cancer because, at a sufficiently fundamental level, we have not been able to work out what kind of cancer we are treating," said senior author Dr. Matthew Ellis, professor of precision medicine at Baylor College of Medicine. "The analysis of proteogenomics data, which combines information on tens of thousands of proteins and genes together using a system developed by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) investigators, provides much more complete details about what is going on in each tumor. However, the application of proteogenomics to both scientific research and cancer diagnosis has been limited by the size of the tissue sample required."

"Importantly, our new methodology includes the analysis of phosphoproteins, which refers to proteins that are activated by the addition of phosphate chemical groups," said Dr. Ellis. "For some cancers, such as ERBB2+ (HER2+) breast cancer, the ability to measure these modifications is critical because they are what drives disease. For the first time, we were able to detect statistically significant reduction of ERBB2 protein phosphorylation after treatment in patients that responded to treatment. We did not see a reduction in this protein for those who did not respond to treatment. In patients that did not respond to treatment, our deep-scale data analyses suggested diverse resistance mechanisms to ERBB2-directed therapeutics that could be addressed with alternative approaches to the ones the patient actually received."

The needle biopsy proteogenomics approach was described in the January 27, 2020, online edition of the journal Nature Communications.

Related Links:
Baylor College of Medicine
Broad Institute of MIT and Harvard



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TETANUS Test
TETANUS VIRCLIA IgG MONOTEST
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.