We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




Modular Targeted Capture Assay Detects Clinically Significant Oncology Alterations

By LabMedica International staff writers
Posted on 19 Feb 2020
Print article
Image: Copy number variants (CNVs) detection directly by UW-OncoPlex sequencing; depicted are examples from a melanoma and colon cancer sample (Photo courtesy of Noah G. Hoffman, MD, PhD).
Image: Copy number variants (CNVs) detection directly by UW-OncoPlex sequencing; depicted are examples from a melanoma and colon cancer sample (Photo courtesy of Noah G. Hoffman, MD, PhD).
The rapid discovery of clinically significant genetic variants has translated to next-generation sequencing assays becoming out-of-date by the time they are designed, validated, and implemented.

The need to comprehensively assess clinical cancer specimens for an expanding list of alterations critical to therapeutic decision making led to the adoption of large “fixed-content” genetic panels that utilized massively parallel sequencing, more commonly referred to as next-generation sequencing (NGS).

Medical Laboratory Scientists at the University of Washington Medical Center (Seattle, WA, USA) used DNA samples for the validation of their OncoPlex Cancer Gene Panel version 6 (UW-OPXv6) were derived from 108 unique specimens from 29 different adult and pediatric neoplasms including central nervous system (CNS) malignancies, leukemia/lymphoma, melanoma, sarcoma, and carcinomas of the lung, breast, endometrium, bowel, and prostate, in addition to five germline samples. UW-OncoPlex is a multiplexed mutation assay for tumor tissue that assesses mutations >350 genes related to cancer treatment, prognosis, or diagnosis.

The team described the validation of OncoPlex version 6 (OPXv6) for the detection of single nucleotide variants (SNVs), insertions and deletions (indels), copy number variants (CNVs), structural variants (SVs), microsatellite instability (MSI), and tumor mutational burden (TMB) in a panel of 340 genes.

All samples had prior molecular characterization via orthogonal clinical tests including both laboratory-developed amplicon-based and hybrid-capture-based NGS assays and/or a custom commercial RNA sequencing assay (FusionPlex, ArcherDx, Boulder, CO, USA). DNA was extracted using one or more kits from Qiagen (Qiagen, Valencia, CA, USA) depending on specimen type and nucleic acid extraction desired. Libraries were prepared from genomic and cell-free DNA, hybridized to a custom panel of xGen Lockdown probes, and sequenced on Illumina platforms (Illumina, San Diego, CA, USA). Sequences were processed through a custom bioinformatics pipeline, and variant calls were compared to prior orthogonal clinical results.

The scientists reported that the performance characteristics of OPXv6 are excellent for all tested variant classes (SNVs, Indels, SVs, and CNVs), both using standard protocols and in the setting of decreased DNA input and multiple methods of nucleic acid extraction. Accuracy was 99% for SNVs ≥5% allele fraction, 98% for indels, 97% for SVs, 99% for CNVs, 100% for MSI, and 100% for TMB. Library preparation turnaround time decreased by 40%, and sequencing quality improved with a 2.5-fold increase in average sequencing coverage and 4-fold increase in percent on-target.

The authors concluded that OPXv6 demonstrates improvements over prior UW-OncoPlex versions including reduced capture cost, improved sequencing quality, and decreased time to result. The modular capture probe design also provides a nimble laboratory response in addressing the expansions necessary to meet the needs of the continuously evolving field of molecular oncology. The study was published on February 3, 2020 in the journal Practical Laboratory Medicine.

Related Links:
University of Washington Medical Center
ArcherDx
Qiagen
Illumina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.