Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Changes in Bacterial Load and Serum Cytokine Levels Predict Likelihood of Dying from Sepsis

By LabMedica International staff writers
Posted on 03 Jun 2020
A testing method for the sensitive and rapid quantification of serum cytokines and bacterial load can be used to predict the likelihood of a patient dying from sepsis or septic shock.

Sepsis is caused by an inflammatory immune response triggered by an infection. It is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and those with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high.

To facilitate the diagnosis, monitoring, and treatment of infectious diseases such as those responsible for sepsis, investigators at the University of Chicago (IL, USA) developed a sensitive and rapid quantification method for bacterial load and serum cytokines from human biological samples.

The method uses digital proximity ligation assays (dPLA) for quantifying both nucleic acid and protein markers. Droplet digital-PCR (ddPCR) readout in the PLA protocol enabled simultaneous measurement of Gram negative (GN)- and Gram positive (GP)-specific 16S rRNA genes (which reflect the abundance of all GN and GP bacteria in the patient samples), and the blaTEM (Beta-lactamase) gene (which induces resistance to the Beta-lactam antibiotics) together with IL-6 and TNF-alpha protein levels in the same patient sample.

A major advantage of this digital amplification method is its ability to quantify very small changes in the concentration of these molecules. ddPCR has a resolution of a single-DNA molecule in samples, and the investigators were able to achieve sub-femtomolar resolution for protein targets.

To demonstrate the potential of this approach, the investigators first used it to analyze bronchoalveolar lavage fluid (BALF) samples from patients with mild-to-severe asthma, and found that patients with asthma had higher levels of GN bacteria and IL-6 than healthy control subjects. They then used the assays to longitudinally characterize plasma samples from patients with septic shock, revealing several molecular features associated with recovery or death. Analyses showed that changes over time of several biomarkers, and not their absolute concentrations, were reliable predictors of patient outcomes. Application of decision tree analysis to results obtained by this method enabled prediction of patient mortality/rate of recovery from septic shock with over 90% accuracy.

"Our findings provide a new approach to the diagnosis of sepsis with the potential to identify the causal pathogen early," said contributing author Dr. Gokhan Mutlu, professor of medicine at the University of Chicago. "This will allow us to use the appropriate antibiotics earlier before the culture results are available and minimize the use of antibiotics that are needed to treat the infection. By combining the pathogen-related and host response data, we are able to predict outcomes in patients with sepsis."

"A rapid test like this is needed in many situations and could really change the game for treatment of sepsis," said senior author Dr. Savas Tay, associate professor of molecular engineering at the University of Chicago. "This is a disease that can kill everybody, regardless of your situation."

The rapid test for digital quantification of cytokines and bacteria was described in the May 25, 2020, online edition of the journal Nature Communications.

Related Links:
University of Chicago


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Silver Member
ACTH Assay
ACTH ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.