We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Changes in Bacterial Load and Serum Cytokine Levels Predict Likelihood of Dying from Sepsis

By LabMedica International staff writers
Posted on 03 Jun 2020
Print article
Image: Cartoon representation of the molecular structure of blaTEM (beta-lactamase) protein (Photo courtesy of Wikimedia Commons)
Image: Cartoon representation of the molecular structure of blaTEM (beta-lactamase) protein (Photo courtesy of Wikimedia Commons)
A testing method for the sensitive and rapid quantification of serum cytokines and bacterial load can be used to predict the likelihood of a patient dying from sepsis or septic shock.

Sepsis is caused by an inflammatory immune response triggered by an infection. It is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and those with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high.

To facilitate the diagnosis, monitoring, and treatment of infectious diseases such as those responsible for sepsis, investigators at the University of Chicago (IL, USA) developed a sensitive and rapid quantification method for bacterial load and serum cytokines from human biological samples.

The method uses digital proximity ligation assays (dPLA) for quantifying both nucleic acid and protein markers. Droplet digital-PCR (ddPCR) readout in the PLA protocol enabled simultaneous measurement of Gram negative (GN)- and Gram positive (GP)-specific 16S rRNA genes (which reflect the abundance of all GN and GP bacteria in the patient samples), and the blaTEM (Beta-lactamase) gene (which induces resistance to the Beta-lactam antibiotics) together with IL-6 and TNF-alpha protein levels in the same patient sample.

A major advantage of this digital amplification method is its ability to quantify very small changes in the concentration of these molecules. ddPCR has a resolution of a single-DNA molecule in samples, and the investigators were able to achieve sub-femtomolar resolution for protein targets.

To demonstrate the potential of this approach, the investigators first used it to analyze bronchoalveolar lavage fluid (BALF) samples from patients with mild-to-severe asthma, and found that patients with asthma had higher levels of GN bacteria and IL-6 than healthy control subjects. They then used the assays to longitudinally characterize plasma samples from patients with septic shock, revealing several molecular features associated with recovery or death. Analyses showed that changes over time of several biomarkers, and not their absolute concentrations, were reliable predictors of patient outcomes. Application of decision tree analysis to results obtained by this method enabled prediction of patient mortality/rate of recovery from septic shock with over 90% accuracy.

"Our findings provide a new approach to the diagnosis of sepsis with the potential to identify the causal pathogen early," said contributing author Dr. Gokhan Mutlu, professor of medicine at the University of Chicago. "This will allow us to use the appropriate antibiotics earlier before the culture results are available and minimize the use of antibiotics that are needed to treat the infection. By combining the pathogen-related and host response data, we are able to predict outcomes in patients with sepsis."

"A rapid test like this is needed in many situations and could really change the game for treatment of sepsis," said senior author Dr. Savas Tay, associate professor of molecular engineering at the University of Chicago. "This is a disease that can kill everybody, regardless of your situation."

The rapid test for digital quantification of cytokines and bacteria was described in the May 25, 2020, online edition of the journal Nature Communications.

Related Links:
University of Chicago

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
ELISA System
ABSOL HS DUO
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.