We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Highly Sensitive Liquid Biopsy Technique Brings Personalized Cancer Monitoring a Step Closer

By LabMedica International staff writers
Posted on 29 Jun 2020
Print article
Image: Circulating tumor DNA (ctDNA) is found in serum and plasma fractions from blood. The mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized. Once ctDNA is isolated, it can be sequenced for mutational analysis (Photo courtesy of Wikimedia Commons)
Image: Circulating tumor DNA (ctDNA) is found in serum and plasma fractions from blood. The mechanism of ctDNA release is unknown, though apoptosis, necrosis, and active secretion from tumor cells have been hypothesized. Once ctDNA is isolated, it can be sequenced for mutational analysis (Photo courtesy of Wikimedia Commons)
A modified liquid biopsy method enables detection of circulating tumor DNA (ctDNA) with much greater sensitivity than previously used techniques and demonstrates the potential to revolutionize all aspects of cancer care, from early detection to personalized treatment and monitoring.

While ctDNA can be used to monitor cancer dynamics noninvasively, detecting it can be challenging in patients with low-volume or residual disease, where the plasma contains very few tumor-derived DNA fragments. Investigators at the University of Cambridge (United Kingdom) and their collaborators sought to develop a method for ctDNA detection with greatly increased sensitivity. To this end, they showed that sensitivity for ctDNA detection in plasma could be improved by using the INtegration of VAriant Reads (INVAR) pipeline. This technique combined custom error-suppression methods and signal-enrichment approaches based on biological features of ctDNA to analyze hundreds to thousands of mutations.

Current liquid biopsies search for around 10-20 mutations and up to around 100 in blood samples. Thus, they are able to detect ctDNA to levels on the range of one mutant molecule amongst 30,000 fragments of DNA. In contrast, the INVAR technique searched for hundreds and sometimes thousands of mutations in each blood sample, routinely achieving a sensitivity of one mutant molecule per 100,000, and under optimal conditions reached a level of ctDNA measured in parts per million.

The investigators applied INVAR to custom hybrid-capture sequencing data from 176 plasma samples from 105 patients with melanoma, lung, renal, glioma, and breast cancer across both early and advanced disease. By integrating signal across a median of more than 105 informative reads, ctDNA was routinely quantified to one mutant molecule per 100,000, and in some cases with high tumor mutation burden and/or plasma input material, to parts per million. This resulted in median area under the curve (AUC) values of 0.98 in advanced cancers and 0.80 in early-stage and challenging settings for ctDNA detection.

Senior author Dr. Nitzan Rosenfeld, senior group leader in cancer research at the University of Cambridge, said, “Personalized tests that can detect if cancer is still present, or find it early if it is returning, are now being tested in clinical trials. Whilst this may be several years away from clinical use, our research shows what is possible when we push such approaches to an extreme. It demonstrates that the levels of sensitivity we have come to accept in recent years in relation to testing for ctDNA can be dramatically improved. At present this is still experimental, but technology is advancing rapidly, and in the near future tests with such sensitivity could make a real difference to patients.”

The INVAR approach was described in the June 17, 2020 online edition of the journal Science Translational Medicine.

Related Links:
University of Cambridge

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.