We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A Paper-Based Nucleic Acid Testing Device for Rapid Diagnosis of Mosquito-Borne Viral Diseases

By LabMedica International staff writers
Posted on 22 Sep 2020
Print article
Image: The Aedes aegypti mosquito can spread various tropical diseases including dengue, zika, and chikungunya, which have similar symptoms (Photo courtesy of Gwangju Institute of Science and Technology)
Image: The Aedes aegypti mosquito can spread various tropical diseases including dengue, zika, and chikungunya, which have similar symptoms (Photo courtesy of Gwangju Institute of Science and Technology)
An all-in-one nucleic acid testing device loaded into a paper chip forms the basis for a simple, rapid diagnostic test for a range of mosquito-borne viral diseases.

COVID-19 is not the only disease out there. Several tropical fever viruses transmitted by mosquitoes including zika, dengue, and chikungunya, are becoming a serious problem in global public health. The three diseases have similar symptoms, making early diagnosis particularly difficult without complex molecular diagnostic equipment. Thus, simple diagnostic tools are strongly required to monitor and prevent these diseases.

In this regard, investigators at the Gwangju Institute of Science and Technology (South Korea) developed LAMDA (lab-on-paper for all-in-one molecular diagnostics), which is a mini laboratory on a paper strip. LAMDA comprises a complete LAMP system in a paper strip. LAMP (Loop-mediated isothermal amplification) is a single-tube technique for the isothermal amplification of DNA and is a low-cost alternative to detect certain diseases. In contrast to the polymerase chain reaction (PCR) technique, in which the reaction is carried out with a series of alternating temperature steps or cycles, isothermal amplification is carried out at a constant temperature, and does not require a thermal cycler. Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) combines LAMP with a reverse transcription step to allow the detection of RNA.

The novel LAMDA platform concentrates the entire process of nucleic acid testing including sampling, extraction, amplification, and detection into a single paper chip. To use the LAMDA test, a drop of blood serum and some drops of distilled water are applied to two pads. The liquids flow through the paper strip horizontally and reach the base of a small vertical stack of layers that extracts all the RNA from the sample and multiplies any viral RNA of the three diseases that might be present. The top layer of the vertical stack comprises individual "reaction" patches, each designed to detect one of the three diseases. After the RNA is extracted, it flows up to the top layer, where LAMP reactions cause the fluorescent indicators on a patch to become dim if its target viral RNA is present in the sample.

Results obtained with the LAMDA platform revealed that three targets, zika virus, dengue virus, and chikungunya virus, in human serum could be detected simultaneously on the all-in-one paper chip within 60 minutes at 65 degrees Celsius. The all-in-one paper chip could be used as a real-time quantitative assay for five to 5000 copies of zika virus RNA, and LAMDA performance was demonstrated with five clinical specimens of zika and dengue virus.

Senior author Dr. Min-Gon Kim, professor of chemistry at the Gwangju Institute of Science and Technology, said "We believe that with minor modifications, such as a portable system to maintain reaction temperature at 65 degrees Celsius and a means to detect the fluorescence change with a smartphone, the proposed all-in-one paper chip can become a portable, low-cost, user-friendly, sensitive, and specific nucleic acid test platform with great potential in point-of-care diagnostics. We certainly hope that our approach and achievements with LAMDA will be helpful to advance research and development of on-site medical diagnostic tools,"

The LAMDA diagnostic platform was described in the October 1, 2020, online edition of the journal Biosensors and Bioelectronics.

Related Links:
Gwangju Institute of Science and Technology

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.