We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Genome Sequencing Evaluated in Children with Unexplained Medical Complexity

By LabMedica International staff writers
Posted on 08 Oct 2020
Print article
Image: The HiSeq X Series incorporates patterned flow cell technology to generate an exceptional level of throughput for whole-genome sequencing. (Photo courtesy of Illumina).
Image: The HiSeq X Series incorporates patterned flow cell technology to generate an exceptional level of throughput for whole-genome sequencing. (Photo courtesy of Illumina).
Children with medical complexity (CMC) have at least one chronic condition, depend on a technological tool like a ventilator or require intravenous nutrition or drugs, are under the care of multiple subspecialists, and have substantial healthcare use.

Collectively, rare genetic conditions are an important cause of severe pediatric morbidity and mortality. A genetic diagnosis can inform prognosis, anticipatory care, management, and reproductive planning. Rapid genome sequencing as a first-tier test in neonatal and pediatric intensive care units has been associated with a high diagnostic yield and potential health care cost savings.

A team of medical geneticists from The Hospital for Sick Children (Toronto, ON, Canada) and some colleagues recruited families taking part in a structured complex care program. Following medical record review, 143 families met eligibility criteria, and 54 of them were interested and met additional criteria. Patients were eligible if they were thought to have an underlying genetic condition that had not been identified through conventional genetic testing. In all, 138 individuals from 49 families underwent genome sequencing, including 40 parent-child trios.

Genome sequencing was performed using established methods, with high-quality DNA extracted from whole blood. In brief, library preparation was performed from 500 ng of DNA using the TruSeq Nano DNA Library Preparation Kit (Illumina Inc, San Diego, CA, USA) omitting the polymerase chain reaction amplification step, followed by sequencing on an Illumina HiSeq X platform. Single-nucleotide variations (SNVs) and indels were detected using Genome Analysis Toolkit, version 3.4-46 or version 3.7 (Broad Institute, Cambridge, MA, USA).

Genome sequencing detected all genomic variation previously identified by conventional genetic testing. A total of 15 probands (30.6%) received a new primary molecular genetic diagnosis after genome sequencing. Three individuals had novel diseases and an additional nine had either ultra-rare genetic conditions or rare genetic conditions with atypical features. At least 11 families received diagnostic information that had clinical management implications beyond genetic and reproductive counseling. One patient, for instance, had a maternally inherited single-exon duplication in the KDM6A gene on the X chromosome that causes Kabuki syndrome, which was not detected by chromosomal microarray analysis, exome sequencing, or a multiplex ligation-dependent probe amplification test of the gene.

The authors concluded that genome sequencing has high analytical and clinical validity and can result in new diagnoses in CMC even in the setting of extensive prior investigations. This clinical population may be enriched for ultra-rare and novel genetic disorders. Genome sequencing is a potentially first-tier genetic test for CMC. The study was published on September 22, 2020 in the journal JAMA Network Open.



Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Food Allergens Assay Kit
Allerquant 14G A
New
Silver Member
Static Concentrator
BJP 10

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.