Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Methylated DNA Profiling Explored for Prenatal Testing Applications

By LabMedica International staff writers
Posted on 17 Nov 2020
A method for analyzing cell-free methylated DNA being developed for use in cancer liquid biopsy testing can potentially also be used for prenatal testing applications.

The method called, cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq), uses antibodies to pull out small quantities of methylated, circulating, cell-free DNA. The method avoids the chemical conversion and destructive nature of bisulfite sequencing, the gold-standard method for methylation profiling.

A team of scientists at Princess Margaret Cancer Centre (Toronto, ON, Canada) presented data on cfDNA from three maternal plasma samples taken between weeks 17 and 18 of gestation. Using principal component analysis, The team was able to separate placental from non-placental DNA, based on known placenta methylome regulators, including tumor suppressors, transposon silencing elements, and placenta imprinted regions. The team is in the process of collecting 300 patient samples representing preterm births and healthy controls.

Using cfMeDIP-seq and machine learning, the team hope to be able to predict subtypes of preterm birth, as well as early and late preeclampsia. In addition, using synthetic spike-in controls with unique molecular indices, the investigators were able to use generalized linear models to absolutely quantify cfDNA, allowing them to correct for enrichment and sequencing biases associated with fragment length, GC content, and CpG dinucleotide fraction within a fragment.

Samantha L. Wilson, PhD, a medical geneticist and the first author of the study, said., “In this study, we have looked at the chemical changes found between circulating DNA of healthy pregnancies and pregnancies involving premature birth. We have identified changes in DNA methylation that can determine pregnancies with a high risk of premature birth. Since the test only uses DNA in the mother's blood, we can do this with a noninvasive blood test with little additional risk to the pregnancy. This study resulted in a noninvasive blood test that can detect pregnancies with increased risk of premature delivery. Use of this test will lead to changes in pregnancy care to try to prevent premature birth.”

Dr. Wilson, added “Currently we're sequencing everything, and it's expensive. If we find a machine learning model that is able to predict preterm birth or whatever pregnancy complication we're looking at, the next step is to reduce the dimensions in the data and create a panel that would be more cost effective for a healthcare setting.” The study was presented at the American Society of Human Genetics 2020 virtual conference, held October 27-30, 2020.

Related Links:
Princess Margaret Cancer Centre


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Uric Acid and Blood Glucose Meter
URIT-10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.