We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Panel of Urinary Peptides Used to Diagnose Liver Fibrosis

By LabMedica International staff writers
Posted on 24 Nov 2020
Print article
Image: Micrograph showing fibrosis of the liver caused by cirrhosis. The tissue in this example is stained with a trichrome stain, in which fibrosis is colored blue. The red areas are the nodular liver tissue (Photo courtesy of Wikimedia Commons)
Image: Micrograph showing fibrosis of the liver caused by cirrhosis. The tissue in this example is stained with a trichrome stain, in which fibrosis is colored blue. The red areas are the nodular liver tissue (Photo courtesy of Wikimedia Commons)
A panel of 50 urinary peptides was shown to be a useful tool for the early diagnosis of liver fibrosis.

Liver fibrosis may result from infection by viruses such as hepatitis B and C, excessive alcohol consumption, a build-up of fat in the liver, or some autoimmune diseases. When the liver becomes fibrotic, accumulation of proteins causes the organ to shrink and become stiffer, which impedes its function. Peptide fragments of these proteins enter the bloodstream, where they are channeled into the kidneys and removed from the body via the urine.

Investigators at the University of Warwick (United Kingdom) and their colleagues sought to determine if these excreted peptides could be used to diagnose liver fibrosis in patients with chronic liver disease.

For this study, the investigators recruited 129 patients with varying degrees of liver fibrosis and 223 controls without liver fibrosis. Additionally, 41 patients with no liver, but kidney fibrosis were included to evaluate interference with expressions of kidney fibrosis. Urinary low molecular weight peptides were analyzed by capillary electrophoresis coupled to mass spectrometry.

Capillary electrophoresis coupled to mass spectrometry (CE-MS) has emerged in recent years as a hybrid technology using capillary electrophoresis (CE) instead of liquid chromatography for sensitive and high-resolution low molecular weight protein and peptide separation before mass spectrometry (MS). Notably, this method enables profiling urinary peptides in a mass range of 0.8 to 20 kilodalton (kDa).

Results revealed that CE-MS enabled identification of 50 urinary peptides associated with liver fibrosis. The peptides were sequenced and shown to be mainly fragments of collagen chains, uromodulin, and Na/K-transporting ATPase subunit gamma.

The investigators used this panel of 50 peptides to evaluate urine samples from a new group of patients. They reported correct identification of liver fibrosis patients in 84.2% of cases (sensitivity), and correct identification of those without fibrosis in 82.4% of cases (specificity).

Senior author Dr. Ramesh Arasaradnam, associate professor of gastroenterology at the University of Warwick Medical School, said, "Analyzing urine for the purposes of diagnostics is a promising research area, and this new study builds on existing work in my research group looking at urine peptides in colon cancer. While we are unlikely to see this in clinical practice for some time, it provides an avenue for further investigation that could help in the prevention of this terrible condition."

The liver fibrosis study was published in the November 5, 2020, online edition of the journal EbioMedicine.

Related Links:
University of Warwick

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Biological Indicator Vials
BI-O.K.
New
Silver Member
HPV Molecular Controls
ZeptoMetrix® HPV Type 16, 18, 45 & 68 Molecular Controls

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.