We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Panel of MicroRNAs Differentiates Uncomplicated and Severe Malaria in Children

By LabMedica International staff writers
Posted on 25 Jan 2021
Print article
Image: Blood smear from a P. falciparum culture: several red blood cells have ring stages inside them while close to the center is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons)
Image: Blood smear from a P. falciparum culture: several red blood cells have ring stages inside them while close to the center is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons)
MicroRNAs (miRNAs), which are rapidly released from damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of severe malaria.

MiRNAs comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia and cardiovascular conditions.

Investigators at the Barcelona Institute for Global Health (Spain) postulated that miRNA levels in plasma would be expressed differentially among children with severe and uncomplicated malaria due to parasite sequestration in vital organs of severely ill children. A characteristic of severe malaria is the sequestration of Plasmodium falciparum infected red blood cells in vital organs such as the lungs, kidneys, or brain. Resulting organ damage triggers the release of miRNAs into body fluids, including the blood.

To prove their hypothesis, the investigators used advanced sequencing techniques to identify miRNAs released by human brain endothelial cells growing in culture when the cultures were exposed to red blood cells infected by P. falciparum. They then applied next-generation sequencing to evaluate the differential expression of these miRNAs in severe malaria (SM) and in uncomplicated malaria (UM) in children living in Mozambique.

Results revealed that six miRNAs were associated with in vitro P. falciparum cytoadhesion, severity in children, and P. falciparum biomass. The six miRNAs were found to be elevated in children with severe malaria. One of the miRNAs was positively related to the amount of a parasite-derived protein HRP2 (histidine rich protein 2). Previous studies had found that the concentration of HRP2 could be used to quantify growth of the parasite in vitro and to define severe malaria in patients.

"We hypothesized that miRNA levels in plasma would be differently expressed in children with severe and uncomplicated malaria, due to parasite sequestration in vital organs," said senior author Dr. Alfredo Mayor, an associate research professor at the Barcelona Institute for Global Health."Our results indicate that the different pathological events in severe and uncomplicated malaria lead to differential expression of miRNAs in plasma. These miRNAs could be used as prognostic biomarkers of disease, but we need larger studies to validate this."

The malaria microRNA study was published in the February 2021 online edition of the journal Emerging Infectious Diseases.

Related Links:
Barcelona Institute for Global Health

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Automated Blood Typing System
IH-500 NEXT
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.