We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Leukocyte Epigenomics and Artificial Intelligence Predict Late-Onset Alzheimer’s Disease

By LabMedica International staff writers
Posted on 12 Apr 2021
Print article
Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)
Image: The EZ DNA Methylation-Direct Kit (Photo courtesy of Zymo Research)
Alzheimer’s Disease (AD) is the most common form of age-related dementia, accounting for 60%–80% of such cases. The disorder causes a wide range of significant mental and physical disabilities, with profound behavioral changes and progressive impairment of social skills.

AD is a complex disorder influenced by environmental and genetic factors. Genome-wide association studies (GWAS) have identified several late-onset AD (LOAD)-associated risk loci proliferation in peripheral blood leukocytes including in T-lymphocytes, B-lymphocytes, polymorphonuclear leucocytes, monocytes, and macrophages have been reported.

A team of Medical Scientists mainly from the Oakland University-William Beaumont School of Medicine (Royal Oak, MI, USA) evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer’s Disease (AD) detection and elucidated its molecular pathogeneses. The team studied blood samples from two dozen Alzheimer's disease patients and the same number of cognitively health controls.

Approximately 500 ng of genomic DNA was extracted from each of the 48 samples, which subsequently were bisulfite converted using the EZ DNA Methylation-Direct Kit (Zymo Research, Orange, CA, USA). They performed genome-wide DNA methylation analysis of the blood samples using Infinium MethylationEPIC BeadChip array (Illumina, San Diego, CA, USA). Artificial Intelligence (AI) analysis was performed using a combination of CpG sites from different genes. They also used six artificial intelligences approaches to analyze their dataset, including support vector machine, random forest, and deep learning. Deep learning is a branch of machine learning that aims to mimic the neural networks of animal brains.

The team reported that each of the AI approaches could predict Alzheimer's disease with high accuracy, yielding areas under the curve (AUC) of at least 0.93. Deep learning further improved upon that with an AUC of 0.99 and a sensitivity and specificity of 97% using intragenic markers. Similar results could be reached with intergenic markers, as well. The group noted that the addition of conventional clinical predictors or mental state analyses did not further improve performance. The analysis highlighted a number of genes and pathways known to be disrupted in Alzheimer's disease. Epigenetically altered genes included, for instance, CR1L and CTSV, which are involved in the morphology of the cerebral cortex, as well as S1PR1 and LTB4R, which are involved in inflammatory response.

Ray O. Bahado-Singh, MD, a Professor of Obstetrics and Gynecology and lead author of the study, said, “We found that the genetic analysis accurately predicted the absence or presence of Alzheimer's, allowing us to read what is going on in the brain through the blood. The results also gave us a readout of the abnormalities that are causing Alzheimer's disease. This has future promise for developing targeted treatment to interrupt the disease process.” The study was published on March 31, 2021 in the journal PLOS ONE.

Related Links:
Oakland University-William Beaumont School of Medicine
Zymo Research
Illumina


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automated Cell Counter
QuadCount
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.