We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A Method for Accurately Assessing the Latent Virus Reservoir in Chronic HIV Patients

By LabMedica International staff writers
Posted on 20 Apr 2021
Print article
Image: HIV assembling on the surface of an infected macrophage. The HIV virions have been marked with a green fluorescent tag and then viewed under a fluorescent microscope (Photo courtesy of Wikimedia Commons)
Image: HIV assembling on the surface of an infected macrophage. The HIV virions have been marked with a green fluorescent tag and then viewed under a fluorescent microscope (Photo courtesy of Wikimedia Commons)
A modified version of the PCR test can determine the quantity and quality of inactive human immunodeficiency virus (HIV) in the genes of individuals suffering from chronic HIV.

While HIV is not curable, antiretroviral therapy drugs (ARTs) effectively suppress the HIV virus to undetectable levels. Nonetheless, a latent HIV reservoir persists due to HIV's integration into the host DNA, specifically in the chromosomes of T lymphocytes and macrophages. Quantifying this replication-competent HIV reservoir is essential for evaluating prognostic and curative strategies.

Currently used viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses.

To correct for the over and under estimation of the latent HIV reservoir, investigators at the University of Washington (Seattle, USA) designed two triplex droplet digital PCR (ddPCR) assays, each with two unique targets and one in common, and normalized the results to PCR-based T-cell counts.

The classical PCR test carries out one reaction per single sample. The digital PCR (dPCR) method also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The dPCR method has been demonstrated as useful for studying variations in gene sequences - such as copy number variants and point mutations - and it is routinely used for clonal amplification of samples for next-generation sequencing.

Droplet digital PCR (ddPCR) is a variation of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.

A ddPCR assay protocol reported in 2019 probed two regions of the HIV-1 genome within each droplet. For the current study, the investigators used two three-region (triplex) ddPCR assays to develop a five-region test (one overlapping region allowed inter-assay quality control). They referred to triple-positive ddPCR droplets as “potentially intact.” By combining the two parallel triplex assays, they could confidently quantify truly intact HIV-1 viral genomes. As a further enhancement, they adapted a multiplexed ddPCR assay specifically quantifying T-cells to accurately normalize to the number of HIV target cells interrogated. This additional step was especially useful for tissue biopsies, because, in contrast to blood, cell populations in tissues were difficult to isolate and purify.

Results obtained during this study revealed that both HIV ddPCR assays were specific, sensitive, and reproducible. Together, they estimated the number of proviruses containing all five primer-probe regions. The five-target results were on average 12.1-fold higher than and correlated with paired quantitative VOA but estimated a markedly smaller reservoir than previous DNA assays.

"Our laboratory test is a simpler way to quantify the reservoir of intact viruses," said senior author Dr. Florian Hladik, research professor of obstetrics and gynecology at the University of Washington. "I can see a patient going to a doctor and adding this to the list of questions they might ask. Now they ask about their viral load and T-cell count. I hope in the future they may be able to ask how large their HIV reservoir might be. What gets me excited is that one day, this number may tell them how long it will take to entirely eliminate HIV from their body."

The study was published in the April 12, 2021, online edition of the journal Cell Reports Medicine.

Related Links:
University of Washington

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.