We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Digital PCR Improves BCR-ABL1 Detection in Chronic Myeloid Leukemia

By LabMedica International staff writers
Posted on 22 Apr 2021
Print article
Image: The QX200 Droplet Digital Polymerase Chain Reaction (PCR) Systems provide ultrasensitive and absolute nucleic acid quantification. (Photo courtesy of Bio-Rad)
Image: The QX200 Droplet Digital Polymerase Chain Reaction (PCR) Systems provide ultrasensitive and absolute nucleic acid quantification. (Photo courtesy of Bio-Rad)
Specific targeting of the Bcr-Abl1 enzyme by tyrosine kinase inhibitors (TKI) revolutionized the management of chronic myeloid leukemia (CML) to the point that TKIs can offer near normal life expectancy for CML patients.

However, some CML patients do not achieve optimal response at defined treatment time points, and others even develop TKI resistance. Therefore, molecular monitoring is crucial for clinical management of CML. Digital PCR (dPCR) offers high reproducibility, precision and increased sensitivity for rare target detection.

Medical Scientists from various disciplines at the Masaryk University (Brno, Czech Republic) performed a retrospective analysis of 70 clinical samples from chronic phase CML patients and 15 samples from healthy volunteers used as BCR-ABL1 negative controls. Reverse-transcription (RT-qPCR) quantification of BCR-ABL1 in K562 cells was performed on an Applied Biosystems 7300 Real-Time PCR System (Waltham, MA, USA). The Xpert BCR-ABL Monitor test (Cepheid, Sunnyvale, CA, USA) was used for quantification of BCR-ABL1 in clinical CML samples. All dPCR measurements were performed on the on QX200 Droplet Digital PCR System (Bio-Rad, Hercules, CA, USA).

The investigators reported that despite overall correlation of ratios, they observed significant differences in copy numbers quantification between RT-qPCR and dPCR. In the samples containing high transcript levels (10%–0.1% BCR-ABL1IS), RT-qPCR detected significantly more BCR-ABL1 copies than dPCR (P < 0.0001). Conversely, in the sample with low transcript levels (0.0032% BCR-ABL1IS), RT-qPCR quantified significantly less BCR-ABL1 copies compared to dPCR. Moreover, in all sample categories dPCR detected significantly less ABL1 copies. A total of 44 CML patients, routinely monitored by GeneXpert, were tested by dPCR. The team observed significant differences in the ratios measured by dPCR and GeneXpert in the 36 patients with low transcript levels (≤0.1% BCR-ABL1IS), which also resulted in low correlation between the methods.

The authors concluded that their study demonstrated that droplet dPCR, tested with standard EAC assays, provided a detection limit of above three BCR-ABL1 copies/sample, which corresponded to sensitivity of conventional quantitative methods. Nevertheless, dPCR categorized more than 50% of the CML patients into different MR categories compared to quantitative GeneXpert. The study was published in the May, 2021 issue of the journal Practical Laboratory Medicine.

Related Links:
Masaryk University
Applied Biosystems
Cepheid
Bio-Rad


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automated Cell Counter
QuadCount
New
ELISA System
ABSOL HS DUO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.