We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Early Warning Biomarker Proteins Appear Years or Decades Before Alzheimer’s Disease Symptoms

By LabMedica International staff writers
Posted on 26 May 2021
Print article
Image: Histopathology of Alzheimer\'s disease in the CA3 area of the hippocampus: Amyloid plaque (top right), neurofibrillary tangles (bottom left) and granulovacuolar degeneration (bottom center). All three images were taken at the same high magnification (Photo courtesy of Wikimedia Commons)
Image: Histopathology of Alzheimer\'s disease in the CA3 area of the hippocampus: Amyloid plaque (top right), neurofibrillary tangles (bottom left) and granulovacuolar degeneration (bottom center). All three images were taken at the same high magnification (Photo courtesy of Wikimedia Commons)
A large proteomic study linked abnormal blood levels of 38 proteins to higher risks of developing Alzheimer's disease within five years and showed that levels of 16 of these proteins could predict Alzheimer's disease risk two decades in advance.

Investigators at Johns Hopkins University (Baltimore, MD, USA) speculated that the plasma proteomic changes that precede the onset of dementia could yield insights into disease biology and highlight new biomarkers and avenues for diagnosis and intervention. To confirm this theory, they collaborated with researchers at the bio-technology company SomaLogic (Boulder, CO, USA) using the recently developed SomaScan technology for protein classification.

Initially, the investigators analyzed blood samples taken during 2011-13 from more than 4,800 late-middle-aged participants in the Atherosclerosis Risk in Communities (ARIC) study, a large epidemiological study of heart disease-related risk factors and outcomes that began in 1985. SomaScan was used to determine levels of nearly 5,000 distinct proteins in the banked ARIC samples. SomaScan was then used to measure protein levels from more than 11,000 blood samples taken from much younger ARIC participants in 1993-95.

Results of the first part of the study revealed 38 proteins whose abnormal levels were significantly associated with a higher risk of developing Alzheimer's disease in the five years following the blood draw. Additional data obtained during the second part of the study revealed that abnormal levels of 16 of the 38 previously identified proteins were associated with the development of Alzheimer's disease in the nearly two decades between that blood draw and a follow-up clinical evaluation in 2011-13.

Further in-depth analysis of the data causally implicated two dementia-associated proteins (SVEP1 and angiostatin) in Alzheimer’s disease. SVEP1, an immunologically relevant cellular adhesion protein, was found to be part of larger dementia-associated protein networks, and circulating levels were associated with atrophy in brain regions, such as the CA3 area of the hippocampus, which are vulnerable to Alzheimer’s disease pathology.

"This is the most comprehensive analysis of its kind to date, and it sheds light on multiple biological pathways that are connected to Alzheimer's," said senior author Dr. Josef Coresh, professor of epidemiology at Johns Hopkins University. "Some of these proteins we uncovered are just indicators that disease might occur, but a subset may be causally relevant, which is exciting because it raises the possibility of targeting these proteins with future treatments."

The study was published in the May 14, 2021, online edition of the journal Nature Aging.

Related Links:
Johns Hopkins University
SomaLogic


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Progesterone Serum Assay
Progesterone ELISA Kit
New
LH ELISA
Luteinizing Hormone ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.