We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




A Novel Nanowell Array Sensor for POC Measurement of Stress Hormones

By LabMedica International staff writers
Posted on 13 Jul 2021
Print article
Image: Artist’s depiction of stress molecules in blood being detected electronically inside nanowells (Photo courtesy of Ella Marushchenko)
Image: Artist’s depiction of stress molecules in blood being detected electronically inside nanowells (Photo courtesy of Ella Marushchenko)
Researchers have constructed a microchip "nanosensor" to measure stress hormones such as cortisol in a dedicated nanowell array, which does not require molecular labels or washing steps.

Investigators at Rutgers University (New Brunswick, NJ, USA) designed a nanowell device based on two electrode probes, which were integrated within the nanowell structure. The electrodes were stacked vertically above one another to minimize the electrode spacing. The electrodes were separated by a 40-nanometer insulator layer within the nanowells, meaning that the counter electrodes were actually integrated into the nanowell structure. This sensor geometry limited the exposed surface area of the electrodes, and, as a result, the amount of probe antibody molecules inside the nanowells, while also enhancing the sensitivity by focusing the electric field into the nanowells.

This functional geometry permitted rapid and low volume (less than five microliters) sensing through activation of the wells with antibodies and monitoring of real-time binding events. A 28-well plate biochip was built on a glass substrate by sequential deposition, patterning, and etching steps to create a stacked nanowell array sensor with an electrode gap of 40 nanometers. Sensor response for cortisol concentrations between one and 15 micrograms per deciliter in buffer solution was recorded, and a limit of detection of 0.5 micrograms per deciliter was achieved.

The nanowell array sensor was used to analyze 65 serum samples from patients with rheumatoid arthritis, and the results were compared to those obtained from the standard enzyme-linked immunosorbent assay (ELISA). The results confirmed that nanowell array sensors could be a promising platform for point-of-care testing, where real-time, laboratory-quality diagnostic results are essential.

"The use of nanosensors allowed us to detect cortisol molecules directly without the need for any other molecules or particles to act as labels," said first author Dr. Reza Mahmoodi, a postdoctoral researcher at Rutgers University. "Our new sensor produces an accurate and reliable response that allows a continuous readout of cortisol levels for real-time analysis. It has great potential to be adapted to non-invasive cortisol measurement in other fluids such as saliva and urine. The fact that molecular labels are not required eliminates the need for large bulky instruments like optical microscopes and plate readers, making the readout instrumentation something you can measure ultimately in a small pocket-sized box or even fit onto a wristband one day."

The nanowell array sensor was described in the June 30, 2021, online edition of the journal Science Advances.

Related Links:
Rutgers University

Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.