Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metabolomic Analytical Approach Identifies Multiple Neonatal Errors of Metabolism Disorders

By LabMedica International staff writers
Posted on 19 Jul 2021
A recent paper demonstrated that an untargeted metabolomics analytical approach could identify many more neonatal disorders caused by inborn errors of metabolism (IEM) than could be found by traditional methods.

With expanded newborn screening becoming increasingly available, a broader approach to primary screening for IEMs is needed. In this regard, investigators at Baylor College of Medicine (Houston, TX, USA) examined whether untargeted metabolomic profiling could significantly increase the diagnostic rate of screening for IEMs compared with the traditional metabolic screening approach. Thus, the traditional trio testing of plasma amino acids, plasma acylcarnitine profiling, and urine organic acids was contrasted with advanced liquid chromatography–coupled mass spectrometry analysis of metabolites.

The clinical metabolomics approach is capable of detecting multiple metabolites with varying chemical properties in a single test for the global analysis of perturbations in biochemical pathways that would otherwise require multiple targeted tests. Using this approach, small molecules ranging from 75-1000 Daltons were extracted from plasma derived from an EDTA whole blood sample using an 80% methanol solution containing four extraction efficiency standards. The clarified supernatant solution was analyzed by one of two different liquid chromatography–coupled mass spectrometry configurations, depending on the date the sample was received in the laboratory.

For this study, data was generated from 4464 clinical samples received from 1483 unrelated families that had been referred for trio testing of plasma amino acids, plasma acylcarnitine profiling, and urine organic acids and from 2000 consecutive plasma samples from 1807 unrelated families received for clinical metabolomic screening.

Results revealed that of 1483 cases screened by the traditional approach, 912 patients (61.5%) were male and 1465 (98.8%) were pediatric. A total of 19 families were identified with IEMs, resulting in a 1.3% diagnostic rate. A total of 14 IEMs were detected, including three conditions not included in the Recommended Uniform Screening Panel for NBS (newborn screening). Of the 1807 unrelated families undergoing plasma metabolomic profiling, 1059 patients (58.6%) were male, and 1665 (92.1%) were pediatric. Screening identified 128 unique cases with IEMs, giving an overall diagnostic rate of 7.1%. In total, 70 different metabolic conditions were identified, including 49 conditions not presently included on the Recommended Uniform Screening Panel for NBS.

Overall, clinical metabolomics supported diagnosis in 7.1% of cases, providing an approximately six-fold higher diagnostic rate in screening for IEMs and identifying more disorders and more disease types compared with the traditional screening approach.

"Currently, newborn screening is conducted in every infant born in the U.S. to check for serious but rare health conditions at birth. Screening includes blood, hearing, and heart tests," said senior author Dr. Sarah Elsea, professor of molecular and human genetics at Baylor College of Medicine. "While newborn screening in general has improved in the last 10 years, clinically screening for inborn errors of metabolism has not changed substantially in the last 40 to 50 years."

"We developed a clinical test - untargeted metabolomics profiling - that looks at a broader range of metabolic compounds in the blood, therefore screening for many more disorders than the currently used approach," said Dr. Elsea. "In the current study, we compared the standard approach and untargeted metabolomics on their effectiveness identifying metabolic conditions. We are finding individuals with milder forms of a disease are more common in our populations than those with severe forms. Our approach has been quite successful identifying seizure disorders, movement disorders, and autism spectrum disorders. Our analyses have taught us to open our minds to a much greater spectrum of disease, allowing us to improve early diagnosis."

The clinical metabolomics approach for diagnosis of IEMs was published in the July 12, 2021, online edition of the journal JAMA Network Open.

Related Links:
Baylor College of Medicine


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Immunoassays and Calibrators
QMS Tacrolimus Immunoassays
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.