We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Serum Biomarkers Enable Tracing the Progress of COVID-19 Infections

By LabMedica International staff writers
Posted on 20 Jul 2021
Print article
Image: Artist’s rendition of the SARS-CoV-2 virus, which causes COVID-19 (Photo courtesy of Pixabay)
Image: Artist’s rendition of the SARS-CoV-2 virus, which causes COVID-19 (Photo courtesy of Pixabay)
A team of Spanish investigators has shown that levels of angiotensin-converting enzyme 2 and various truncated versions of this protein in the blood could be used as biomarkers for following the progress of COVID-19 infection in hospitalized patients.

Useful biomarkers are needed to assess the severity and prognosis of COVID-19 disease, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus. Toward this end, investigators associated with the Spanish National Research Council (Madrid, Spain) examined the levels of various plasma species of the SARS-CoV-2 host receptor, the angiotensin-converting enzyme 2 (ACE2), in patients at different phases of the infection.

ACE2 is a ubiquitous glycoprotein abundantly expressed in humans, particularly in the lung epithelia and oral and nasal mucosa, providing a possible entry route for SARS-CoVs. The human ACE2 gene is localized on the X chromosome and encodes an 805 amino acid-long type I transmembrane glycoprotein with an apparent molecular mass of about 100-130 kiloDaltons. Plasma ACE2 levels have been found to be increased in several inflammatory processes, including renal and cardiovascular disease, as well in diabetes and several others pathological conditions, including acute lung injury.

In the current study, the investigators aimed to characterize and to determine the levels of ACE2 in plasma using immunoprecipitation and western blotting, a technique that allows for both the separation and quantification of individual ACE2 species. They sought to assess whether some of these species could constitute a biomarker of disease in patients infected by SARS-CoV-2. They also analyzed whether plasma levels of the ACE2 species were differentially affected in COVID-19 compared with non-disease subjects, and if levels were restored in patients after a recovery period. The levels of plasma ACE2 species were also analyzed in patients infected by influenza A virus, which uses a different host receptor but can cause similar complications to those of SARS-CoV-2 infection.

The test group comprised 24 women and 35 men, with a mean age of 64 years, who tested positive for COVID-19 by a positive reverse transcription polymerase chain reaction (RT-PCR) assay. All were hospitalized seven to nine days after symptom onset. Of these, 48 SARS-CoV-2 infected patients suffered a moderate presentation of COVID-19, and 11 were considered severe. Two additional groups were also analyzed, one of 17 participants (nine women and eight men), which included individuals aged 34 to 85 years with influenza A virus pneumonia. The other group consisted of 26 disease-free controls (14 women and 12 men) aged 34-85 years.

Results revealed that patients with acute phase COVID-19 had significantly reduced plasma levels of the full-length ACE2 protein compared to non-infected controls. In addition, the plasma levels of a lower molecular mass (70 kiloDalton) truncated ACE2 fragment were increased. These abnormal levels of ACE2 and truncated ACE2 returned to normal after the patients' recovery, suggesting that both forms of ACE2 present in plasma could be used as biomarkers of the progression of coronavirus infection. Furthermore, truncated ACE2 levels served to discriminate between patients infected with SARS-CoV-2 and those infected with influenza A virus.

"Our approach to this research line was the possibility that soluble ACE2 protein can serve as a read-out during infection with COVID-19. This hypothesis originates from our expertise in Alzheimer's disease. In this work we have studied the plasma levels of the coronavirus receptor, the ACE2 protein, and we have been able to determine that there are different forms of the protein in plasma, and that part of the soluble ACE2 are proteolytic fragments of the ACE2 receptor, generated subsequently to interaction with the virus. The full-length protein is also found in plasma, which provides information about tissue affection during infection," said senior author Dr. Javier Sáez-Valero, principle investigator in molecular neurobiology at the UMH-CSIC Neurosciences Institute in Alicante (Spain).

The study was published in the June 30, 2021, online edition of the FASEB Journal.

Related Links:
Spanish National Research Council
UMH-CSIC Neurosciences Institute in Alicante


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Flu Test
ID NOW Influenza A & B 2
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.