We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Automated Detection of Arm-Level Alterations for Individual Cancer Patients

By LabMedica International staff writers
Posted on 25 Sep 2021
Print article
The Quant-iT 1X dsDNA HS (High-Sensitivity) Assay Kit is designed to make DNA quantitation easy and accurate. The assay is highly selective for double-stranded DNA (dsDNA) over RNA (Photo courtesy of Thermo Fisher Scientific)
The Quant-iT 1X dsDNA HS (High-Sensitivity) Assay Kit is designed to make DNA quantitation easy and accurate. The assay is highly selective for double-stranded DNA (dsDNA) over RNA (Photo courtesy of Thermo Fisher Scientific)
Copy number alterations (CNAs) can be gains, losses, or loss of heterozygosity (LOH) of a chromosome segment. Based on the length of the altered segment, they are crudely classified as “focal alterations” and “arm-level alterations”.

While genome-wide techniques to detect arm-level alterations are gaining momentum in hospital laboratories, the high precision and novelty of these techniques pose new challenges. There is no consensus on the definition of an arm-level alteration and a lack of tools to compute them for individual patients.

Clinical Scientists at the Geneva University Hospital (Geneva, Switzerland) performed OncoScan FFPE assays (Thermo Fisher Scientific, Waltham, MA, USA) for more than 400 patients as part of the routine laboratory analyses from 2016 to 2018. The median age at the time of analysis was 59 years for females and 60 years for males. Among these 376 samples, 25 were manually selected to validate the method against the expert annotations from the clinical report. Centered on the content of the clinical reports, the selection was made to represent a diverse range of arm-level alterations in terms of chromosomal distribution, CNA type (Gain versus. Loss of copies), tumor ploidy, and the number of arms altered.

Genomic DNA was purified from Formalin-Fixed Paraffin-Embedded (FFPE) tumor tissues using QIAamp DNA FFPE Tissue Kit (QIAGEN (Hilden, Germany) and quantified using the Quant-iT dsDNA HS Assay Kit (Life Technologies, CA, USA). The arrays were stained in GeneChip Fluidics Station (Thermo Fisher Scientific) and scanned using the Gene Chip scanner. The OncoScan assay has a genome-wide resolution of 300Kbp and an even finer 50-100Kbp resolution on ∼ 900 cancer genes.

The team observed a bimodal distribution of the percentage of bases with CNAs within a chromosomal arm, with the second peak starting at 90% of arm length. They tested two approaches for the definition of arm-level alterations: sum of altered segments (SoS) >90% or the longest segment (LS) >90%. The approaches were validated against expert annotation of 25 clinical cases. The SoS method outperformed the LS method with a higher concordance (SoS: 95.2 %, LS: 79.9 %). Some of the discordances were ultimately attributed to human error, highlighting the advantages of automation. The investigators observed that both computational approaches (SoS and LS) showed a high number of arm-level alterations (Gain (27), Loss (14) and LOH (8)), which were missed by the manual annotation, but detected by this approach.

The authors concluded that their computational method is highly accurate and robust for detecting copy number alterations across diverse cancer types in a clinical setting. The method performs as accurately as human experts, but at a fraction of the time. A software tool also increases reliability, as typographic and annotation errors were observed in some manually curated cases. The method and tool they described are now routinely used in the Department of Clinical Pathology at the Geneva University Hospitals and are available to the community. The study was published on August 25, 2021 in The Journal of Molecular Diagnosis.

Related Links:

Geneva University Hospital 
Thermo Fisher Scientific 
QIAGEN 
Life Technologies

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Unit-Dose Packaging solution
HLX
New
Automated Cell Counter
QuadCount
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.