We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Automated Detection of Arm-Level Alterations for Individual Cancer Patients

By LabMedica International staff writers
Posted on 25 Sep 2021
Print article
The Quant-iT 1X dsDNA HS (High-Sensitivity) Assay Kit is designed to make DNA quantitation easy and accurate. The assay is highly selective for double-stranded DNA (dsDNA) over RNA (Photo courtesy of Thermo Fisher Scientific)
The Quant-iT 1X dsDNA HS (High-Sensitivity) Assay Kit is designed to make DNA quantitation easy and accurate. The assay is highly selective for double-stranded DNA (dsDNA) over RNA (Photo courtesy of Thermo Fisher Scientific)
Copy number alterations (CNAs) can be gains, losses, or loss of heterozygosity (LOH) of a chromosome segment. Based on the length of the altered segment, they are crudely classified as “focal alterations” and “arm-level alterations”.

While genome-wide techniques to detect arm-level alterations are gaining momentum in hospital laboratories, the high precision and novelty of these techniques pose new challenges. There is no consensus on the definition of an arm-level alteration and a lack of tools to compute them for individual patients.

Clinical Scientists at the Geneva University Hospital (Geneva, Switzerland) performed OncoScan FFPE assays (Thermo Fisher Scientific, Waltham, MA, USA) for more than 400 patients as part of the routine laboratory analyses from 2016 to 2018. The median age at the time of analysis was 59 years for females and 60 years for males. Among these 376 samples, 25 were manually selected to validate the method against the expert annotations from the clinical report. Centered on the content of the clinical reports, the selection was made to represent a diverse range of arm-level alterations in terms of chromosomal distribution, CNA type (Gain versus. Loss of copies), tumor ploidy, and the number of arms altered.

Genomic DNA was purified from Formalin-Fixed Paraffin-Embedded (FFPE) tumor tissues using QIAamp DNA FFPE Tissue Kit (QIAGEN (Hilden, Germany) and quantified using the Quant-iT dsDNA HS Assay Kit (Life Technologies, CA, USA). The arrays were stained in GeneChip Fluidics Station (Thermo Fisher Scientific) and scanned using the Gene Chip scanner. The OncoScan assay has a genome-wide resolution of 300Kbp and an even finer 50-100Kbp resolution on ∼ 900 cancer genes.

The team observed a bimodal distribution of the percentage of bases with CNAs within a chromosomal arm, with the second peak starting at 90% of arm length. They tested two approaches for the definition of arm-level alterations: sum of altered segments (SoS) >90% or the longest segment (LS) >90%. The approaches were validated against expert annotation of 25 clinical cases. The SoS method outperformed the LS method with a higher concordance (SoS: 95.2 %, LS: 79.9 %). Some of the discordances were ultimately attributed to human error, highlighting the advantages of automation. The investigators observed that both computational approaches (SoS and LS) showed a high number of arm-level alterations (Gain (27), Loss (14) and LOH (8)), which were missed by the manual annotation, but detected by this approach.

The authors concluded that their computational method is highly accurate and robust for detecting copy number alterations across diverse cancer types in a clinical setting. The method performs as accurately as human experts, but at a fraction of the time. A software tool also increases reliability, as typographic and annotation errors were observed in some manually curated cases. The method and tool they described are now routinely used in the Department of Clinical Pathology at the Geneva University Hospitals and are available to the community. The study was published on August 25, 2021 in The Journal of Molecular Diagnosis.

Related Links:

Geneva University Hospital 
Thermo Fisher Scientific 
QIAGEN 
Life Technologies

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Silver Member
ACTH Assay
ACTH ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.