We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metabolomics-Based Test Detects Early-Stage Lung Cancer and Predicts Patient Survival Time

By LabMedica International staff writers
Posted on 18 Feb 2022
Print article
Image: Magic-Angle-Spinning (MAS) nuclear magnetic resonance (NMR) was used to establish the lung cancer predictive model. The sample (blue) is rotating with high frequency inside the main magnetic field (B0). It is tilted by the magic angle θm with respect to the direction of the magnetic field orientation (Photo courtesy of Wikimedia Commons)
Image: Magic-Angle-Spinning (MAS) nuclear magnetic resonance (NMR) was used to establish the lung cancer predictive model. The sample (blue) is rotating with high frequency inside the main magnetic field (B0). It is tilted by the magic angle θm with respect to the direction of the magnetic field orientation (Photo courtesy of Wikimedia Commons)
A predictive model based on alterations in blood metabolites measured by high-resolution magnetic resonance spectroscopy can detect early-stage lung cancer.

Early-stage lung cancer is mostly asymptomatic, so the disease is usually only diagnosed at a late stage when the survival rate is extremely low. To facilitate earlier detection of lung cancer, investigators at Harvard Medical School’s Massachusetts General Hospital (Boston, USA) created a lung cancer predictive model based on metabolomics profiles in blood samples. Metabolomics is the systematic study of the unique small-molecule chemical fingerprints that specific cellular processes leave behind.

To build a predictive model to indicate lung cancer presence and patient survival using serum samples collected prior to their disease diagnoses, the investigators employed high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS).

The investigators analyzed 10 microliter serum samples obtained from 79 patients before (within five years) and at the time of lung cancer diagnosis. Disease predictive models were established by comparing serum metabolomic patterns between training cohorts: patients with lung cancer at time of diagnosis, and matched healthy controls. These predictive models were then applied to evaluate serum samples of validation and testing cohorts, all collected from patients before their lung cancer diagnosis.

Results revealed that the predictive model could detect changes in blood metabolomic profiles that were intermediate between healthy and disease states. The model was applied to a different group of 54 patients with non-small-cell lung carcinoma (NSCLC) to analyze blood samples obtained before and after their cancer diagnosis. Results confirmed that the model’s predictions were accurate. Furthermore, values from the metabolomics predictive model measured from prior-to-diagnosis sera could be used to predict five-year survival for patients with localized disease.

“Our study demonstrates the potential for developing a sensitive screening tool for the early detection of lung cancer,” said senior author Dr. Leo L. Cheng. associate professor of radiology at Harvard Medical School. “The predictive model we constructed can identify which people may be harboring lung cancer. Individuals with suspicious findings would then be referred for further evaluation by imaging tests, such as low-dose CT, for a definitive diagnosis.”

The predictive model for early diagnosis of lung cancer was described in the December 13, 2021, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
Massachusetts General Hospital

Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Monkeypox Test
Monkeypox Virus Rapid Antibody Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.