We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Genetic Changes Identified in Patients Who Progress to Esophageal Cancer

By LabMedica International staff writers
Posted on 03 May 2022
Print article
Image: Photomicrograph showing histopathological appearance of an esophageal adenocarcinoma (dark blue – upper-left of image) and normal squamous epithelium (upper-right of image) (Photo courtesy of Nephron)
Image: Photomicrograph showing histopathological appearance of an esophageal adenocarcinoma (dark blue – upper-left of image) and normal squamous epithelium (upper-right of image) (Photo courtesy of Nephron)

Barrett’s esophagus (BE), a predominantly benign metaplasia that arises in the esophagus in response to chronic gastric reflux, also develops somatic mutations, but can further evolve extensive genomic alterations which confer significantly increased risk of progression to esophageal adenocarcinoma (ESAD).

Cancer-only studies have uncovered a vast array of genomic alterations in cancer, but are unable to provide a direct comparison of somatic genome evolution of benign neoplastic tissue in non-progressing patients from those who were ultimately diagnosed with cancer. Barrett’s esophagus is an excellent in vivo model in which to study these genome dynamics.

A large team of medical scientists led by the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) designed a case-control study was with 80 participants diagnosed with Barrett’s esophagus (BE). The demographics of the study were typical of BE and ESAD with 72 males and eight females, with the average age at T1 of 65.5 years (range 43-82) for cancer outcome (CO) and 66.1 years (range 41-87) for non-cancer outcome (NCO).

The investigators collected for each time point two fresh-frozen endoscopic biopsies, independent of those used for histologic evaluation, were within the histologically defined regions of Barrett’s esophageal tissue for whole-genome sequencing (WGS). Normal controls from each participant were sequenced from either blood (N = 62) or normal gastric biopsies when blood was not available (N = 18) and analyzed by 30X WGS and 2.5 M SNP array for paired analysis. Somatic chromosome alterations (chromosome copy number and cnLOH) were assessed in BE and control biopsies using the Omni 2.5 M 8v1.3 array (Illumina, San Diego, CA, USA). Several other molecular techniques were also employed.

The scientists reported that the same somatic mutational processes were active in Barrett’s tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett’s versus those who progress to cancer was acquisition and expansion of TP53−/− cell populations having complex structural variants and high-level amplifications, which were detectable up to six years prior to a cancer diagnosis.

Thomas G. Paulson, PhD, a senior staff scientist who co-led the project said, “Most progressors had two hits in TP53. Two hits would suggest a person is at very high risk for progressing from BE to cancer, though occasionally a person with one hit may also progress. Patients who progressed to cancer also had TP53 mutations in larger regions of tissue, compared to the single-hit, localized lesions in non-progressing patients. If both copies of TP53 in a person’s cells are broken, it’s very difficult for them to fix damaged DNA. This leads to duplications, deletions or reshuffling of large pieces of DNA.” In fact, the team saw that BE cells in patients who progressed to esophageal cancer were much more likely to contain these large, complex changes than cells from those who never progressed.

The authors concluded that their findings reveal the timing of common somatic genome dynamics in stable Barrett’s esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies. The study was published on April 28, 2022 in the journal Nature Communications.

Related Links:
Fred Hutchinson Cancer Research Center 
Illumina

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Uric Acid and Blood Glucose Meter
URIT-10
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.