We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




X chromosome Genes Linked to Male Infertility

By LabMedica International staff writers
Posted on 12 Jul 2022
Print article
Image: X chromosome Genes Linked to Male Infertility (Photo courtesy of National Human Genome Research Institute)
Image: X chromosome Genes Linked to Male Infertility (Photo courtesy of National Human Genome Research Institute)

Male infertility can be caused by low sperm production, abnormal sperm function or blockages that prevent the delivery of sperm. Illnesses, injuries, chronic health problems, lifestyle choices and other factors may contribute to male infertility.

Although the evolutionary history of the X chromosome indicates its specialization in male fitness, its role in spermatogenesis has largely been unexplored. Currently only three X chromosome genes are considered of moderate-definitive diagnostic value.

A large international team of medical scientists led by the University of Florence (Florence, Italy) used targeted X chromosome sequencing or exome sequencing to search for genetic contributors to infertility in more than 2,350 men with idiopathic forms of non-obstructive azoospermia or cryptozoospermia that could not be explained using conventional diagnostic methods. Genomic data were analyzed and compared with data in normozoospermic control individuals and Genome Aggregation Database (gnomAD) database (Broad Institute, Cambridge, MA, USA).

The team flagged hundreds of X chromosome genes that were recurrently mutated in men with infertility. When they whittled that set down by considering associations within and across cohorts, they identified 21 genes with the strongest spermatogenic ties and another 34 genes with more modest associations. When the team took the most pronounced infertility associations forward for targeted sequence analyses in another 265 men with non-obstructive azoospermia/cryptozoospermia and 54 non-obstructive azoospermia patients, it identified nine infertile men carrying variants in half a dozen of the genes. Still other genes in the candidate set had weaker links to infertility across the replication cohort.

The investigators validated suspected associations, explored protein interaction profiles for candidate infertility contributors, and searched for other genes that had higher-than-usual mutation burdens in infertile men compared with their fertile counterparts. The most frequently affected prioritized gene, RBBP7, was found mutated in ten men across all cohorts.

Csilla Krausz, MD, PhD, an Endocrinologist and a senior author of the study, said, “Our analysis represents a substantial step toward reducing the gap in our understanding of X-linked genetic causes of spermatogenic failure.”

The authors concluded that collectively, their study represents a significant step towards the definition of the missing genetic etiology in idiopathic severe spermatogenic failure and significantly reduces the knowledge gap of X-linked genetic causes of azoospermia contributing to the development of future diagnostic gene panels. The study was published on July 8, 2022 in the American Journal of Human Genetics.

Related Links:
University of Florence 
Genome Aggregation Database

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.