We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App




Super-Enhancer Induces Oncogenic Driver in Colorectal Carcinoma

By LabMedica International staff writers
Posted on 24 Oct 2022
Print article
Image: Agilent Technologies 2100 Bioanalyzer and DNA chip (Photo courtesy of GMI)
Image: Agilent Technologies 2100 Bioanalyzer and DNA chip (Photo courtesy of GMI)

The etiology of super-enhancer (SE) reprogramming in cancer is incompletely understood, but is widely attributed to cancer cell-intrinsic genomic alterations. Non-coding SE can become focally amplified in multiple malignancies.

Whether the local tumor microenvironment influences the SE landscape of cancer cells is poorly understood. However, the extent this phenomenon recapitulates enhancer reprogramming in cancer is unclear. Furthermore, it is unknown whether environment-induced enhancer changes are mere passenger events or functionally benefit tumor growth.

A large team of Oncological Scientists at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and their colleagues profiled potential super enhancer sequences in fresh tumor and normal samples from 15 colon cancer patients undergoing surgery, focusing in on recurrent super enhancers that respond to inflammatory cytokines and boost PDZK1IP1 gene expression.

The team used chromatin immunoprecipitation sequencing focused on the histone 3 lysine 27 acetylation (H3K27ac) epigenetic histone modification. Chromatin immunoprecipitation was followed by deep sequencing (ChIP-seq), and DNA was run on an Agilent High Sensitivity DNA chip using an Agilent Technologies 2100 Bioanalyzer (Santa Clara, CA, USA) for quality control. H3K27ac ChIP-seq antibodies were purchased. Sample-matched RNA-seq and H3K27ac ChIP-seq across multiple patient cohorts were utilized to predict SE target genes. Cellular glycolysis was measured using the Agilent XF Glycolysis stress test kit and XP Mitochondrial stress test kit. Cytokine profiling was performed by Eve Technologies using the Human Cytokine Array/Chemokine Array 48-plex platform (Calgary, AB, Canada).

The investigators identified 2,026 total SEs in tumor and normal, which accounted for approximately 50% of the H3K27ac signal, with 95% saturation of unique SE discovery at 10 and 11 patients for adjacent normal and primary colorectal carcinoma (CRC), respectively. H3K27ac deposition at these 2,026 SEs exhibits tissue-of-origin specificity, clustering separately from other malignancies under hierarchical unsupervised analyses when re-processed together with their datasets using the same pipeline. Of the primary specimen enriched SEs, nine SEs were among the top 100 SEs they found to be enriched in primary CRC over patient-matched normal colon.

Ramon E. Parsons, MD, PhD, a Professor of Oncology and senior author of study, said, “What this means for most patients with colon cancer is that inflammation that's occurring in the tumor is contributing to the tumor's growth. This stresses the importance of understanding what we can do to curb the inflammatory effects in the colon through prevention or understanding what dietary effects might have on the microenvironment in the colon.”

The authors concluded that they had demonstrated mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. They showed this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens. The study was published on Oct 17, 2022 in the journal Nature Communications.

Related Links:
Icahn School of Medicine at Mount Sinai 
Agilent Technologies 
Eve Technologies 

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.