We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated Device for Non-Invasive Measurement of Cells’ Electrical Properties to Advance Cancer Diagnosis

By LabMedica International staff writers
Posted on 12 Dec 2023
Print article
Image: The newly developed high-throughput measurement device determines the dielectric properties of cancer cells (Photo courtesy of TUC)
Image: The newly developed high-throughput measurement device determines the dielectric properties of cancer cells (Photo courtesy of TUC)

Effective monitoring of cancer cells is crucial for physicians in guiding treatment and managing the disease, potentially reducing cancer-related mortality. Non-invasive diagnostic platforms that measure the electrical properties of cancer cells show promise for early detection of drug resistance and metastasis in cancer. Earlier studies have found that the type of cancer and its drug resistance status can be understood from cellular permittivity and conductivity data. As a result, there is a growing need for analytical methods that can quickly measure these electrical properties of cells. Electrorotation (ROT) is one method that can capture these cellular properties by analyzing permittivity and conductivity based on how a cell moves in an electric field. This method characterizes cell types and states by profiling their frequency-dependent rotational movement under a modulated electric field. However, traditional ROT methods have limitations, primarily the cumbersome process of capturing, measuring, and replacing cells, which reduces the throughput – the number of cells analyzed over time.

To overcome these challenges, researchers from Tokyo University of Science (TUS, Tokyo, Japan) have developed a continuous flow ROT (cROT) system that incorporates microfluidics to continuously measure cellular dynamics while simultaneously capturing cells on a single device. The researchers designed the device with interdigitating electrodes to induce cell rotation and included a microchannel for cell passage. The geometry of these electrodes enhances the number of cells analyzed and reduces the time needed for cell replacement as measurements are collected. The electric field within the microchannel allows for the analysis of rotational behavior from a continuous flow of cells, boosting the automated system's throughput.

In validation studies, the cROT device significantly outperformed traditional ROT platforms in terms of throughput. While conventional ROT methods process about 10 to 20 cells per hour, the cROT system can handle up to 2700 cells per hour, a more than 100-fold increase. Additionally, it greatly reduces the time needed for cell replacement. Other benefits include the system's high level of automation and its ease of installation or removal. The researchers expect the rapid and accurate analyses enabled by this innovative method to drive significant progress in cancer drug development, diagnostics, and new cell-based therapies. This groundbreaking technology paves the way for collaborations and adoption by key players in the oncology field, potentially transforming cancer treatment strategies.

"With our cROT technique, we've unlocked the ability to delve into the subtle intricacies of single-cell dynamics, including aspects like cell physiology, the state of the cell membrane, and the concentration of intracellular ions," said Dr. Masahiro Motosuke, a Professor in the Department of Mechanical Engineering at TUS and the project's Principal Investigator.

Related Links:
TUS

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.