We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Hantavirus Rapid Test Paves Way for Early Outbreak Control

By LabMedica International staff writers
Posted on 29 Feb 2024
Print article
Image: The approach of the study was rooted in adoption of NGS technologies with spotlight on MinION nanopore sequencer (Photo courtesy of Oxford Nanopore)
Image: The approach of the study was rooted in adoption of NGS technologies with spotlight on MinION nanopore sequencer (Photo courtesy of Oxford Nanopore)

Orthohantaviruses, known for their ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome in the Americas, are significant public health concerns due to their high transmission rates and impact on health. These zoonotic pathogens have been the focus of extensive research, particularly for controlling outbreaks and devising intervention strategies. In South Korea's Gyeonggi Province, a notable number of HFRS cases have been reported, highlighting the need for diligent epidemiological surveillance and a deeper understanding of orthohantaviruses' genomic diversity. Now, new research has unveiled the potential of cost-efficient Flongle sequencing for rapid hantavirus genome-based diagnostics and phylogeographical surveillance.

A research team from Korea University College of Medicine (Seoul, South Korea) undertook a study in the Gyeonggi Province to investigate the prevalence, viral loads, and genetic variations of Hantaan orthohantavirus (HTNV). They utilized Flongle sequencing, an innovative and budget-friendly approach, for detecting HTNV genomes, emphasizing the use of the Oxford MinION nanopore sequencer in the field of next-generation sequencing technologies. The team's methodology included capturing rodents and shrews from various areas using live traps, followed by mitochondrial DNA analysis, indirect immunofluorescence antibody tests, and other molecular methods for species identification and virus detection.

During the 2017-2018 surveillance in Gyeonggi Province, a substantial presence of Apodemus agrarius, a common rodent species, was noted. Among these, 12.4% were found to be seropositive for HTNV, indicating the virus's prevalence in the region. The use of Flongle sequencing was key in acquiring full-length genomic sequences from positive samples, achieving high coverage rates and accuracy on par with Illumina sequencing. The study's phylogeographical analysis revealed distinct evolutionary divergence among HTNV's tripartite genomes, with genetic clustering and evolutionary pattern incongruences highlighting the virus's segment-specific evolution.

While the study offers critical insights, the researchers acknowledge limitations like the need for enhanced sensitivity testing of Flongle-based diagnostics and the requirement for broader genomic and epidemiological data in certain endemic areas. This research represents a major advancement in the understanding of orthohantaviruses and sets the stage for more focused strategies to combat HFRS outbreaks. The findings underscore the importance of genomics in disease surveillance and hold promise for improved responses to emerging infectious diseases.

“We developed a rapid and sensitive on-site diagnostic using a nanopore-based Flongle chip with a reasonable cost of around $100. This approach enables virtually whole-genome sequencing of HTNV within 3 hours,” said Prof. Jin-Won Song from Korea University College of Medicine who led the research. "We believe our findings provide important insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK. Our study pioneers the integration of cost-efficient Flongle sequencing into hantavirus diagnostics, offering a rapid and accurate tool for on-site detection. This innovation has the potential to transform how we approach and manage hantavirus outbreaks."

Related Links:
Korea University College of Medicine 

New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Anti-Annexin V IgG/IgM Assay
Anti-Annexin V IgG/IgM ELISA
New
Automated Pipetting System
apricot DC1

Print article

Channels

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Microbiology

view channel
Image: The Cytovale System isolates, images, and analyzes cells (Photo courtesy of Cytovale)

Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application

Sepsis is the leading cause of death and the most expensive condition treated in U.S. hospitals. The risk of death from sepsis increases by up to 8% for each hour that treatment is delayed, making early... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.