We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Smart Hydrogel Paves Way for New ‘Lollipop’ Mouth Cancer Diagnostic

By LabMedica International staff writers
Posted on 25 Mar 2024
Print article
Image: The potentially flavored ‘lollipop’ could help mouth cancer diagnosis (Photo courtesy of University of Birmingham)
Image: The potentially flavored ‘lollipop’ could help mouth cancer diagnosis (Photo courtesy of University of Birmingham)

Currently, the process of diagnosing oral cancer involves the uncomfortable step of inserting a flexible camera, attached to a tube, through the nose or mouth to take a tissue sample. This invasive procedure, which is both time-consuming and reliant on skilled professionals, could soon be replaced by a groundbreaking and patient-friendly alternative. A newly developed 'lollipop' diagnostic tool, created using innovative smart hydrogel technology, promises a quicker, more accurate, and less invasive way to diagnose mouth cancer, potentially leading to earlier detection for patients.

Researchers from the University of Birmingham (Birmingham, UK) are developing a prototype flavored ‘lollipop’ from a smart hydrogel they had developed previously. Smart hydrogels have a remarkable ability to soak up vast amounts of water while capturing larger molecules, like proteins, similar to how a net captures fish. This innovative diagnostic tool works by having patients transfer saliva into the hydrogel by sucking on the 'lollipop.' Subsequently, proteins indicative of the early stages of mouth cancer can be isolated by exposing the hydrogel to UV light, releasing the captured proteins for laboratory analysis. The biocompatible hydrogel concentrates and labels proteins with a fluorescent marker in just one step, making it ideal for diagnostics that aim to detect low-abundance proteins from small samples.

The hydrogel achieves protein capture via the fluorescent marker (fluorescein isothiocyanate or FITC), which is attached to the hydrogel by a photocleavable bond. Upon exposure to light, the protein, which is now attached to the fluorescein, gets released from the hydrogel. Early experiments demonstrated the hydrogel's ability to offer a concentration factor of 236 with a reference protein (streptavidin), and 50% of the proteins in the hydrogel were released after 100 seconds of exposure to UV light. This gel presents several advantages over current diagnostic methods by simplifying the process, requiring fewer steps than ELISA-based assays or preconcentration techniques, and operating effectively at room temperature. Its biocompatibility further allows for its application both in vitro and directly on patients, marking a significant advancement from traditional, invasive diagnostic procedures that demand medical expertise.

“Smart hydrogels have really exciting potential for diagnosing mouth cancer,” said Dr. Ruchi Gupta, Associate Professor of Biosensors at the University of Birmingham who developed the gel. “They can be easily molded into shapes as a solid to “catch” proteins in saliva, and we’re hoping that we can be the first to make a device which is much kinder for diagnosing mouth cancer for patients and easier for GPs to use.”

Related Links:
University of Birmingham

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Echinococcus Granulosus Assay
Echinococcus Granulosus IgG ELISA
New
Vaginal pH Screening Kit
Vaginal pH Screening Kit

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.