We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Technology-Based Blood Test Identifies Lung Cancer Earlier

By LabMedica International staff writers
Posted on 10 Jun 2024
Print article
Image: Illustration representing DELFI approach for lung cancer detection (Photo courtesy of Cancer Discovery)
Image: Illustration representing DELFI approach for lung cancer detection (Photo courtesy of Cancer Discovery)

Lung cancer stands as the most lethal cancer in the United States, as reported by the National Cancer Institute, and holds a similar status globally, according to the World Health Organization. Annual screening using computed tomography (CT) scans for individuals at high risk can detect lung cancers at an early, more manageable stage, potentially reducing mortality rates. The U.S. Preventive Services Task Force advises that 15 million Americans aged between 50 and 80 who have smoked should undergo screening, yet only about 6% to 10% of those eligible actually receive yearly screenings. The low screening uptake is often due to the time commitment required for arranging and attending screenings, and concerns over the minimal radiation exposure from the scans. Now, researchers have leveraged artificial intelligence (AI) to spot patterns of DNA fragments linked to lung cancer, which has led to the development and validation of a liquid biopsy that could identify the disease earlier. This innovation may enhance the identification of those at highest risk and who could benefit most from further CT screening, potentially increasing screening rates and reducing death rates.

In the last five years, researchers at Johns Hopkins Medicine (Baltimore, MD, USA) have developed a test employing AI to analyze DNA fragment patterns indicative of lung cancer. This method capitalizes on the different ways in which DNA is organized in healthy versus cancerous cells. In healthy cells, DNA is compactly and uniformly structured, similar to a rolled-up ball of yarn. In contrast, the DNA in cancer cells tends to be more disorganized. As these cells die, their DNA fragments, which end up in the bloodstream, appear more chaotic and irregular compared to those from non-cancerous individuals. Through a prospective study, which was published in the journal Cancer Discovery on June 3, the team demonstrated their AI-driven technology's ability to identify individuals who are more likely to have lung cancer based on these DNA fragment patterns in the blood.

The study included roughly 1,000 participants, both with and without cancer, who qualified for conventional lung cancer screening with low-dose CT. Participants were recruited across 47 centers in 23 U.S. states. The research team trained their AI software using specific DNA fragment patterns from the blood samples of 576 individuals, both cancer-afflicted and healthy. They then confirmed their methodology's efficacy on a second cohort of 382 individuals, with and without cancer. Their analysis indicated that the test possesses a negative predictive value of 99.8%, suggesting that only 2 out of every 1,000 tested may be missed and have lung cancer. Simulation studies by the group suggest that if the screening rate could be increased to 50% within five years through this test, it could quadruple the detection of lung cancers and increase the detection of early-stage cancers by approximately 10%. This could potentially prevent around 14,000 cancer deaths over the same period. The researchers plan to seek approval for the test from the U.S. Food and Drug Administration for lung cancer screening and explore its application for other cancer types.

“We have a simple blood test that could be done in a doctor’s office that would tell patients whether they have potential signs of lung cancer and should get a follow-up CT scan,” said Victor E. Velculescu, M.D., Ph.D., professor of oncology at the Johns Hopkins Kimmel Cancer Center. “The test is inexpensive and could be done at a very large scale. We believe it will make lung cancer screening more accessible and help many more people get screened. This will lead to more cancers being detected and treated early.” 

Related Links:
Johns Hopkins Medicine

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Adenovirus Test
S3334E ADV Adenovirus Kit
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.