We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Technology-Based Blood Test Identifies Lung Cancer Earlier

By LabMedica International staff writers
Posted on 10 Jun 2024
Print article
Image: Illustration representing DELFI approach for lung cancer detection (Photo courtesy of Cancer Discovery)
Image: Illustration representing DELFI approach for lung cancer detection (Photo courtesy of Cancer Discovery)

Lung cancer stands as the most lethal cancer in the United States, as reported by the National Cancer Institute, and holds a similar status globally, according to the World Health Organization. Annual screening using computed tomography (CT) scans for individuals at high risk can detect lung cancers at an early, more manageable stage, potentially reducing mortality rates. The U.S. Preventive Services Task Force advises that 15 million Americans aged between 50 and 80 who have smoked should undergo screening, yet only about 6% to 10% of those eligible actually receive yearly screenings. The low screening uptake is often due to the time commitment required for arranging and attending screenings, and concerns over the minimal radiation exposure from the scans. Now, researchers have leveraged artificial intelligence (AI) to spot patterns of DNA fragments linked to lung cancer, which has led to the development and validation of a liquid biopsy that could identify the disease earlier. This innovation may enhance the identification of those at highest risk and who could benefit most from further CT screening, potentially increasing screening rates and reducing death rates.

In the last five years, researchers at Johns Hopkins Medicine (Baltimore, MD, USA) have developed a test employing AI to analyze DNA fragment patterns indicative of lung cancer. This method capitalizes on the different ways in which DNA is organized in healthy versus cancerous cells. In healthy cells, DNA is compactly and uniformly structured, similar to a rolled-up ball of yarn. In contrast, the DNA in cancer cells tends to be more disorganized. As these cells die, their DNA fragments, which end up in the bloodstream, appear more chaotic and irregular compared to those from non-cancerous individuals. Through a prospective study, which was published in the journal Cancer Discovery on June 3, the team demonstrated their AI-driven technology's ability to identify individuals who are more likely to have lung cancer based on these DNA fragment patterns in the blood.

The study included roughly 1,000 participants, both with and without cancer, who qualified for conventional lung cancer screening with low-dose CT. Participants were recruited across 47 centers in 23 U.S. states. The research team trained their AI software using specific DNA fragment patterns from the blood samples of 576 individuals, both cancer-afflicted and healthy. They then confirmed their methodology's efficacy on a second cohort of 382 individuals, with and without cancer. Their analysis indicated that the test possesses a negative predictive value of 99.8%, suggesting that only 2 out of every 1,000 tested may be missed and have lung cancer. Simulation studies by the group suggest that if the screening rate could be increased to 50% within five years through this test, it could quadruple the detection of lung cancers and increase the detection of early-stage cancers by approximately 10%. This could potentially prevent around 14,000 cancer deaths over the same period. The researchers plan to seek approval for the test from the U.S. Food and Drug Administration for lung cancer screening and explore its application for other cancer types.

“We have a simple blood test that could be done in a doctor’s office that would tell patients whether they have potential signs of lung cancer and should get a follow-up CT scan,” said Victor E. Velculescu, M.D., Ph.D., professor of oncology at the Johns Hopkins Kimmel Cancer Center. “The test is inexpensive and could be done at a very large scale. We believe it will make lung cancer screening more accessible and help many more people get screened. This will lead to more cancers being detected and treated early.” 

Related Links:
Johns Hopkins Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
PAPP-A Test
PAPP-A Mass Units AccuBind ELISA
New
Gold Member
Veterinary Hematology Analyzer
Exigo H400

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: Lunit SCOPE HER2 is an AI-powered solution designed to detect HER2 expression profile (Photo courtesy of Lunit)

AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.