We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Handheld Device Puts Power of Lab-Based Diagnostic Testing in the Palm of Your Hand

By LabMedica International staff writers
Posted on 24 Jul 2024
Print article
Image: The LIAMT handheld processor features a window which the user can look through to view fluorescent virus detection signals (Photo courtesy of Ziyue Li)
Image: The LIAMT handheld processor features a window which the user can look through to view fluorescent virus detection signals (Photo courtesy of Ziyue Li)

Many common tests for infectious diseases work by detecting either antigens related to the virus or antibodies created in response to the infection. These tests, which now include widely used COVID-19 rapid antigen tests, offer the advantages of speed and broad availability. However, polymerase chain reaction (PCR) tests still surpass these in terms of accuracy, reaching nearly 100%. PCR tests, considered the gold standard in infectious disease diagnostics, excel because they detect a pathogen’s genetic material like RNA directly. This capability increases specificity, reducing the likelihood of false positives. PCR can also amplify minimal amounts of genetic material, allowing it to detect infections at very low levels. Yet, PCR requires specialized skills and expensive equipment, which limits its availability, particularly in low-resource settings.

Researchers at the University of Connecticut (Storrs, CT, USA) have now developed a platform technology that incorporates PCR-like capabilities within a handheld device, as detailed in a study published in Advanced Science. This device can detect HIV and SARS-CoV-2 with PCR-level performance but is more accessible, faster, and portable, potentially making advanced diagnostics more widespread. This new device, the lab-in-a-magnetofluidic tube (LIAMT), integrates all necessary functions into a single, portable unit unlike the multiple large machines required for PCR. LIAMT simplifies the isolation of genetic material by using magnetism instead of centrifugation. It employs tiny magnetic beads within a 1.5-milliliter tube to capture viral RNA, which is then pulled through washing steps by a magnet inside the device, effectively isolating the RNA. LIAMT does not require the thermal cycling equipment typical of PCR. Instead, it uses a constant, low-temperature process facilitated by special proteins that separate and duplicate nucleic acid strands. After amplification, the LIAMT device slightly heats the sample to melt a wax barrier, releasing a solution of CRISPR enzymes that emit a fluorescent signal upon binding to their target. This signal indicates the presence of viral RNA if it's substantial enough, visible through a small window on the device.

This system, devoid of heavy equipment like centrifuges and thermal cyclers, offers a significant advancement in making diagnostic tools more accessible and faster—producing results within about an hour compared to the longer processes associated with traditional PCR, where samples often need to be sent away for analysis. To verify its effectiveness, researchers tested LIAMT against traditional PCR using swab samples for SARS-CoV-2 and blood plasma samples for HIV. The results showed LIAMT to have comparable sensitivity and specificity, aligning closely with PCR results in most cases. Encouraged by these findings, the researchers plan to further refine LIAMT’s performance and usability, particularly to enhance care for HIV patients who require regular testing. This could transform routine testing by eliminating the need for hospital visits and lengthy waits, offering instead rapid, reliable results at the point of care.

“With our device, we used the volume you could get from a finger prick to produce accurate HIV test results quickly. Patients could take these tests at a local point-of-care center or at home and receive the medication they need more quickly,” said Changchun Liu, Ph.D., a professor of biomedical engineering at the University of Connecticut.

Related Links:
University of Connecticut

New
Gold Member
ANCA IFA
Kallestad Autoimmune ANCA IFA Complete Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
hCG+β Automated Immunofluorescent Assay
B·R·A·H·M·S hCG+β KRYPTOR
New
IGFBP-1 Rapid Test
AMNISTRIP

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
A schematic of the 3D MM imaging experimental setup used in the studies of blood films (Photo courtesy of Ushenko, A.G., et al.; doi.org/10.1038/s41598-024-63816-z)

Novel Light-Based Technique With 90% Accuracy Rate to Revolutionize Cancer Diagnosis

A quicker, cheaper, and less painful cancer detection technique developed using light has the potential to revolutionize cancer diagnosis, early detection, and monitoring. Researchers at Aston Institute... Read more

Industry

view channel
Image: The QIAstat-Dx IVD panel for neurodegenerative applications will be integrated with the QIAstat-Dx multiplex testing platform (Photo courtesy of QIAGEN)

Qiagen and Eli Lilly to Develop First QIAstat-Dx IVD Panel for Neurodegenerative Applications

QIAGEN N.V. (Venlo, the Netherlands) has entered into a collaboration with Eli Lilly and Company (Indianapolis, IN, USA) to support the development of a QIAstat-Dx in-vitro diagnostic (IVD) to detect APOE genotypes.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.