We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Blood Test Diagnoses Brain Cancer in Less Than an Hour

By LabMedica International staff writers
Posted on 28 Aug 2024
Print article
Image: The biochip is used to detect biomarkers for glioblastoma, a fast-growing brain cancer (Photo courtesy of Matt Cashore/University of Notre Dame)
Image: The biochip is used to detect biomarkers for glioblastoma, a fast-growing brain cancer (Photo courtesy of Matt Cashore/University of Notre Dame)

Glioblastoma, an aggressive and currently incurable brain cancer, typically leaves the average patient with a life expectancy of 12-18 months post-diagnosis. Now, a groundbreaking device is capable of diagnosing glioblastoma in less than an hour. This device's central component is a biochip that employs electrokinetic technology to identify biomarkers, specifically active Epidermal Growth Factor Receptors (EGFRs), which are commonly overexpressed in several cancers, including glioblastoma, and found in extracellular vesicles.

Extracellular vesicles, or exosomes, are unique and considerably large nanoparticles secreted by cells. To develop the device, the research team at the University of Notre Dame (Notre Dame, IN, USA) faced a dual challenge: distinguishing active from non-active EGFRs and building a diagnostic tool that could sensitively and selectively detect active EGFRs on extracellular vesicles from blood samples. Their solution was a biochip integrating an economical electrokinetic sensor the size of a ballpoint pen ball. This setup allows antibodies on the sensor to bind multiple times to a single vesicle, greatly enhancing both the sensitivity and specificity of the diagnosis. Additionally, synthetic silica nanoparticles are used to signal the presence of active EGFRs on captured vesicles, contributing a strong negative charge that causes a voltage shift detectable when active EGFRs are present, signaling glioblastoma.

This innovative charge-sensing approach reduces the common interferences seen in other sensor technologies that rely on electrochemical reactions or fluorescence. The diagnostic system comprises three main components: an automation interface, a portable machine prototype that supplies the necessary materials for the test, and the biochip itself. Each analysis, which consumes only 100 microliters of blood and is completed in under an hour, requires a new biochip, costing less than USD 2 to produce, while the automation interface and prototype are reusable. While initially developed for glioblastoma, this technology is versatile enough for potential adaptation to other diseases by detecting various biological nanoparticles. The research team is currently investigating its application in diagnosing pancreatic cancer and other conditions such as cardiovascular disease, dementia, and epilepsy.

“Our electrokinetic sensor allows us to do things other diagnostics cannot,” said Satyajyoti Senapati, a research associate professor of chemical and biomolecular engineering at Notre Dame and co-author of the study. “We can directly load blood without any pretreatment to isolate the extracellular vesicles because our sensor is not affected by other particles or molecules. It shows low noise and makes ours more sensitive for disease detection than other technologies.”

Related Links:
University of Notre Dame

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.