We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Technique Enables Comprehensive Genetic Examination of Embryos with Single Test

By LabMedica International staff writers
Posted on 05 Sep 2024
Print article
Image: The technique can analyze the entire genome - all genes and chromosomes - in a single test (Photo courtesy of Masoud Zamani Esteki & Luis Gonçalves Lopes)
Image: The technique can analyze the entire genome - all genes and chromosomes - in a single test (Photo courtesy of Masoud Zamani Esteki & Luis Gonçalves Lopes)

Prospective parents facing the risk of transmitting serious hereditary diseases or experiencing recurrent miscarriages due to chromosomal abnormalities often turn to pre-implantation genetic testing (PGT), or embryo selection. This IVF process involves screening embryos for genetic defects, ensuring only those without such abnormalities are implanted. Genetic flaws can vary widely; for instance, a single-gene mutation may heighten the risk of hereditary breast cancer, while chromosomal irregularities might lead to miscarriages due to non-viable embryos. Until now, identifying these different abnormalities required multiple tests, forcing each couple to undergo separate genetic evaluations to determine the appropriate test. Researchers have now introduced a method that examines embryos for all recognized genetic irregularities using just one test. This new technique is more accurate and faster than earlier methods, increasing the chances of conceiving a healthy child for those at heightened risk of inherited disorders.

Developed by scientists at Karolinska Institutet (Stockholm, Sweden and Maastricht University (Maastricht, Netherlands;l), this innovative technique can analyze the entire genome—encompassing all genes and chromosomes—in a single test. This comprehensive approach allows for the detection of any hereditary condition more rapidly and effectively. The preliminary process is uniform for all, streamlining and speeding up the procedure. According to research published in Nature Communications, this method not only covers all known anomaly types but also boasts greater accuracy than existing technologies, identifying even minute genetic errors.

This advancement in technology opens new doors by enabling a full examination of genetic material. Clinically, it allows for an assessment that goes beyond the specific condition sought, helping to identify embryos with the best prospects for a successful pregnancy and healthy childbirth. This could potentially reduce the number of embryos needed for transfer. Nonetheless, this broadened capability brings up several ethical questions. There needs to be a consensus on how to handle unexpected findings that are definitively problematic, ensuring that no embryos with these issues are transferred, while also distinguishing them from normal genetic variations. Therefore, both ethical deliberation and additional data are essential to establish clear guidelines for clinical application.

“With the available tests, we could only examine specific parts of the genetic information in an embryo. This new technique maps all the genetic information in an embryo, which means we do not need to develop a PGT test for each individual condition,” said geneticist Masoud Zamani Esteki, an affiliated researcher at Karolinska Institutet, who led the study. “In addition, this technique can also detect specific genetic abnormalities, namely those in the DNA outside the cell nucleus (mitochondrial DNA), such as in MELAS syndrome.”

Related Links:
Karolinska Institutet
Maastricht University

New
Gold Member
RPR and TPLA Assays
SEKURE RPR and TPLA Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Plasmodium Parasites Test
Plasmodium Genotyping Real Time PCR Kit
New
Dengue Virus Test
Diagnostic Kit for Dengue Virus RNA (PCR-Fluorescence Probing)

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.