We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Technology Detects Cancer Mutant Genes in Blood with World's Highest Sensitivity

By LabMedica International staff writers
Posted on 11 Sep 2024
Print article
Image: Representative diagram of 3D nanoplasmonics-based technology for detecting mutant genes in blood (Photo courtesy of KIMS)
Image: Representative diagram of 3D nanoplasmonics-based technology for detecting mutant genes in blood (Photo courtesy of KIMS)

Current genetic analysis technologies have struggled with low analytical sensitivity when detecting mutated genes, especially in early-stage cancer patients, making accurate diagnoses challenging. Furthermore, establishing quick treatment strategies and using these technologies for screening tests has been limited by the high cost, lengthy analysis times, and the need for specialized equipment. To address these issues, researchers have developed a new technology capable of detecting cancer mutations in the blood with an unprecedented mutation detection sensitivity of 0.000000001%. This innovation, based on plasmonic nanomaterials for optical signal amplification, was tested on blood samples from lung cancer patients (stages 1-4) and healthy individuals for EGFR mutations, achieving a diagnostic accuracy of 96%.

Developed by the Korea Institute of Materials Science (KIMS, Changwon, South Korea), this low-cost technology can analyze various cancer mutations in the target gene region within one hour, boasting a sensitivity of 0.000000001% (100 zM mutation/10 nM wild-type), which is 100,000 times greater than the previously reported level of 0.0001%. This advancement allows for the early detection of cancer using blood samples from lung cancer patients. The technology relies on nanomaterials that enhance the fluorescence signal and a unique primer/probe design that suppresses the fluorescence of normal genes while amplifying the signal of mutated cancer genes. This accurate detection of fluorescence signals is critical for precisely detecting even tiny amounts of cancerous mutations.

The research team developed a biochip in the form of a microarray, capable of detecting three different EGFR mutant genes (deletions, insertions, and point mutations) on a plasmonic substrate made of high-density, three-dimensional gold nanostructures. In clinical trials involving 43 lung cancer patients (stages 1-4) and 40 healthy individuals, the technology demonstrated a clinical sensitivity of 93% for cancer patients and a clinical specificity of 100% for the healthy group. This breakthrough can play a crucial role in the early diagnosis of cancer, monitoring disease recurrence, and assessing treatment effectiveness, helping to establish personalized treatment plans. Moreover, the ability to perform liquid biopsies using blood rather than invasive surgical biopsies reduces the burden on patients and simplifies the examination process. This technology also shows promise as a regular screening tool, ultimately improving cancer management and patient outcomes.

“Because it is capable of comprehensively detecting various cancer mutations with the world’s highest level of ultra-high sensitivity, it can become a leading player in the early cancer diagnosis and treatment/recurrence monitoring market,” said KIMS senior researcher Dr. Min-young Lee. “We expect that this will greatly improve the survival rate and quality of life of cancer patients.”

Related Links:
KIMS

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Autoimmune Disease Test
Anti-Centromere B ELISA Test
New
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)

Print article

Channels

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.