Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetic Signature in Newborns Predicts Neonatal Sepsis Before Symptoms Appear

By LabMedica International staff writers
Posted on 29 Oct 2024

Neonatal sepsis, which occurs due to the body’s abnormal response to severe infection within the first 28 days of life, results in approximately 200,000 deaths globally each year. This condition affects around 1.3 million infants worldwide annually, with even higher rates reported in lower- and middle-income countries (LMICs). Diagnosing sepsis poses significant challenges for both healthcare providers and families. The symptoms can resemble those of various other illnesses, and tests to determine the presence of sepsis can take several days, may not always be accurate, and are largely confined to hospital settings. This uncertainty can lead to delays in administering urgent antibiotic treatment. Furthermore, even if treatment is successful, sepsis can cause lifelong consequences, including developmental delays in children, cognitive deficits, and long-term health issues. A new study has now revealed that a genetic signature in newborns can predict neonatal sepsis before any symptoms appear, offering the potential to assist healthcare professionals in diagnosing affected infants earlier, especially in LMICs where neonatal sepsis is a critical issue.

The extensive study was conducted by researchers at The University of British Columbia (UBC, Vancouver, BC, Canada) and Simon Fraser University (SFU, Burnaby, BC, Canada) in The Gambia, where blood samples were collected from 720 infants at birth. Among this cohort, 15 infants developed early-onset sepsis. The researchers employed machine learning techniques to analyze the expression of genes active at birth, seeking biological markers capable of predicting sepsis. The findings, published in eBiomedicine, indicate that the researchers identified four genes that, when combined into a 'signature', could accurately predict sepsis in newborns with a success rate of 90%.

This study presented a unique opportunity, as samples from all infants in the cohort were available on the day of their birth, allowing researchers to investigate the gene expressions in those who later developed sepsis before they exhibited any illness. Most previous studies have only reported markers detected after the infants had already fallen ill, making those findings less useful for prediction. The next phase of this research involves conducting a large prospective study to validate the predictive capability of the signature in other populations and to establish its methodology. Following this, the aim will be to develop point-of-care tools for approval by relevant regulatory bodies. The researchers hope that this genetic signature will eventually be integrated not only into PCR tests in hospitals but also into portable, point-of-care devices.

“There are point-of-care devices available that can test for gene expression, for instance, COVID-19 and influenza, with a single drop of blood. They can operate anywhere with a power source including batteries and can be used by anyone, not just trained healthcare providers,” said co-senior author Dr. Bob Hancock, professor in the UBC department of microbiology and immunology. “These portable devices could be retooled to recognize this ‘signature’ relatively easily and inexpensively.”

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.