We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Powered Blood Test Enables Detection, Analysis and Profiling of Cancer Tumors

By LabMedica International staff writers
Posted on 10 Dec 2024
Print article
Image: The new method will help guide cancer treatment using blood samples (Photo courtesy of 123RF)
Image: The new method will help guide cancer treatment using blood samples (Photo courtesy of 123RF)

Mutational signatures are changes in DNA patterns caused by cancer’s effects on cells in the body. These signatures can provide valuable insights into the cancer, such as the potential causes behind its development and which therapies may be most effective. Currently, obtaining this information requires whole genome sequencing of a tissue biopsy from the cancer, which is then compared to the patient's matched normal DNA sample. A standard biopsy that involves removing tissue or cells is costly and time-consuming, and it can also be difficult to collect tissue biopsy samples, especially when the tumor is located in hard-to-reach areas.

Researchers at Peter MacCallum Cancer Centre (Victoria, Australia) have now developed a method that utilizes circulating tumor DNA (ctDNA) from a patient's blood to detect cancer-related DNA changes. Their innovative approach, known as MisMatchFinder, uses an algorithm to identify these changes through a simple blood test. This method, published in Nature Communications, offers the potential to make genome sequencing more accessible and efficient, enabling quicker, personalized treatment plans for cancer patients. Moreover, it could revolutionize cancer monitoring by tracking changes in the disease over time, eliminating the need for repeated biopsies.

“Excitingly, this new methodology will allow us to observe what is happening to the tumor over various time points,” said study co-author Dr. Dineika Chandrananda. “MisMatchFinder brings considerable advances to the clinic and holds the potential to provide new insights into the use of mutational signatures. We believe that this knowledge will help guide and inform clinical decisions to optimize research led cancer treatment strategies.”

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.