We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New AI-Based Method Improves Diagnosis of Drug-Resistant Infections

By LabMedica International staff writers
Posted on 09 Apr 2025
Print article
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)
Image: The AI-based method can more accurately detect antibiotic resistance in deadly bacteria such as tuberculosis and staph (Photo courtesy of Adobe Stock)

Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat, often necessitate costlier or more toxic medications, and lead to extended hospital stays and higher mortality rates. In 2021, the World Health Organization (WHO) reported that 450,000 people developed multidrug-resistant tuberculosis, with a treatment success rate falling to just 57%. Current resistance detection methods, employed by organizations such as the WHO, either take too long—such as culture-based testing—or fail to detect rare mutations, as seen with some DNA-based tests. Now, a new artificial intelligence (AI)-based method has been developed to more accurately detect genetic markers of antibiotic resistance in Mycobacterium tuberculosis and Staphylococcus aureus, which could facilitate faster and more effective treatment.

Researchers at Tulane University (New Orleans, LA, USA) have introduced an innovative Group Association Model (GAM), leveraging machine learning to identify genetic mutations associated with drug resistance. Unlike traditional tools that might mistakenly link unrelated mutations to resistance, GAM operates without relying on prior knowledge of resistance mechanisms, making it more adaptable and capable of identifying previously undetected genetic alterations. The model, detailed in Nature Communications, addresses both the slow diagnostic processes and the failure to detect rare mutations by analyzing whole genome sequences. It compares groups of bacterial strains with varying resistance profiles to identify genetic changes that consistently indicate resistance to specific drugs.

In their study, the researchers applied GAM to over 7,000 strains of Mtb and nearly 4,000 strains of S. aureus, identifying crucial mutations linked to resistance. They discovered that GAM not only matched or surpassed the accuracy of the WHO’s resistance database but also significantly reduced false positives, which are incorrect markers of resistance that could lead to improper treatment. The combination of machine learning with GAM also enhanced its predictive capabilities, particularly when working with limited or incomplete data. In validation tests using clinical samples from China, the machine-learning-enhanced model outperformed the WHO-based methods in predicting resistance to critical first-line antibiotics. This breakthrough is important because early detection of resistance allows doctors to adjust treatment regimens appropriately, preventing the infection from worsening or spreading. The model's ability to identify resistance without requiring expert-defined rules also suggests it could be applied to other bacterial infections.

“Current genetic tests might wrongly classify bacteria as resistant, affecting patient care,” said lead author Julian Saliba, a graduate student in the Tulane University Center for Cellular and Molecular Diagnostics. “Our method provides a clearer picture of which mutations actually cause resistance, reducing misdiagnoses and unnecessary changes to treatment.”

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.