We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Technology Breakthrough in Deep Light Imaging to Improve Disease Diagnosis

By LabMedica International staff writers
Posted on 13 Jul 2023
Print article
Image: New deep light imaging could improve disease diagnosis (Photo courtesy of Freepik)
Image: New deep light imaging could improve disease diagnosis (Photo courtesy of Freepik)

Optical coherence tomography (OCT), an important form of light imaging, operates on the principle of light backscattering within the sample under observation, similar to how light gets scattered in fog due to water droplets possessing different refractive indices than the air. Just as the scattering makes it hard to see through fog, the scattering by cellular components and smaller constituents in biological tissue also complicates imaging tasks. Specifically, acquiring a clear signal from depths surpassing 1mm presents significant difficulties, chiefly because of intervening tissue. Now, a technological breakthrough in OCT is set to revolutionize applications in fields like ophthalmology, dermatology, cardiology, and early cancer detection, as well as improve disease diagnosis.

Traditional understanding holds that the OCT signal is largely influenced by light that has experienced a single backscattering event, while light that has been scattered numerous times hampers image creation. An international team of researchers, in collaboration with the University of St Andrews (Scotland, UK), have uncovered a contrasting perspective. They suggest that selectively gathering multiply scattered light could enhance image contrast at depth, especially in highly scattering samples. The researchers further demonstrated how this technique could be applied in a simple way with minimal additional optics, by shifting the light delivery and collection pathways. The team is confident that their ground-breaking discovery has the potential to challenge existing conventions and bring about a significant shift in retrieving images at depth.

“The unique configuration, supported by our modeling, should redefine our view on OCT signal formation – and we can now use this insight to extract more information and to improve diagnosis of disease,” said Dr. Peter Andersen, co-corresponding author from Technical University of Denmark.

Related Links:
University of St Andrews 

New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
PSA Test
Human Semen Rapid Test
New
Entamoeba One Step Card Test
CerTest Entamoeba

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.