We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Dose-Efficient X-Ray Imaging Method Produces Micrometer Resolution Images of Biopsy Samples

By LabMedica International staff writers
Posted on 20 Dec 2023
Print article
Image: Experimental setup of the dose-efficient X-ray imaging method (Photo courtesy of KIT)
Image: Experimental setup of the dose-efficient X-ray imaging method (Photo courtesy of KIT)

X-ray imaging plays a vital role in revealing the hidden structures and processes within living cells and organisms. However, the ionizing nature of X-ray radiation, composed of high-energy electromagnetic waves, poses a risk of damaging DNA, which in turn limits the duration of observation. Traditional X-ray imaging of soft tissues often results in low-contrast images, but phase contrast methods have been found to yield much clearer contrasts at lower radiation doses. However, achieving higher resolution in X-ray imaging is challenging due to the need for increased radiation dose, which is compounded by the reduced efficiency of high-resolution detectors, leading to further increase in radiation exposure. Until now, high-resolution X-ray phase contrast imaging of living biological samples could only be performed for a limited time before radiation caused significant damage.

At the Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany), a team of researchers has innovated a technique that utilizes radiation more effectively and achieves micrometer-level resolution imaging. This method is suitable for observing both living organisms and delicate materials, opening new possibilities in fields like biology, biomedicine, and materials science. The novel system integrates X-ray phase contrast imaging with a Bragg magnifier and a photon-counting detector. In this setup, a photon-counting detector with 55-micrometer pixel size is used, and before capturing the specimen’s X-ray image, it is magnified using a Bragg magnifier. This magnification process allows the specimen's resolution to reach approximately 1 micrometer. The Bragg magnifier itself comprises two perfectly aligned silicon crystals, where the magnification effect is derived from asymmetric diffraction in the crystal lattice of silicon. A significant benefit of this Bragg magnifier is its exceptional optical image transmission, enabling almost complete replication of all spatial frequencies up to the resolution limit.

By combining propagation-based X-ray phase contrast with a Bragg magnifier and a photon-counting detector, all fine-tuned for 30 keV X-ray energy, the method achieves near-maximal dose efficiency for X-ray phase contrast imaging. This advancement permits extended observation periods of small living organisms with detailed micrometer resolution. The team showcased this technique in a preliminary study on tiny parasitic wasps, observing their activities inside host eggs and their emergence over more than 30 minutes. Future plans involve enhancing the setup to expand the field of view and boost mechanical stability, thereby enabling even longer measurement durations.

“Instead of converting the X-ray image into an image with visible light and enlarging it afterwards, we enlarge it directly,” said LAS doctoral researcher Rebecca Spiecker. “Thanks to this approach, we can use highly efficient large-area detectors. The method is also suited for biomedical applications, an example being the gentle three-dimensional histological investigation of biopsy samples.”

Related Links:
KIT

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.