We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




First Ever Technique Identifies Single Cancer Cells in Blood for Targeted Treatments

By LabMedica International staff writers
Posted on 04 Apr 2024
Print article
Image: A new technique has demonstrated the ability to identify single cancer cells in blood for the first time (Photo courtesy of crystal light/Shutterstock)
Image: A new technique has demonstrated the ability to identify single cancer cells in blood for the first time (Photo courtesy of crystal light/Shutterstock)

The global medical community is increasingly recognizing liquid biopsy as a transformative approach to enhancing cancer patient care. This innovative diagnostic method involves detecting and analyzing circulating tumor DNA, circulating tumor RNA (including microRNA, long non-coding RNA, and messenger RNA), DNA or RNA from exosomes, and circulating tumor cells (CTCs) in the bloodstream. Originating from primary tumors or metastases, CTCs are cancer cells that can be found as individual cells or as clusters in peripheral blood. Despite advancements, accurately quantifying CTCs remains challenging, creating the need for a reliable method that can universally identify CTCs from various tumors, swiftly, efficiently, and with minimal disruption to patient care. A pioneering study has now demonstrated a technique that can identify single cancer cells in a blood sample, opening doors to more customized and targeted cancer treatments.

A team of academics including researchers from Keele University (Keele, UK) employed Fourier Transform Infrared (FTIR) microspectroscopy, a technique for separating cells based on their biochemical composition using infrared light. For the first time, combining FTIR microspectroscopy with a machine learning algorithm led to the successful identification of a single lung cancer cell in a blood sample. This breakthrough supports the move towards personalized medicine, which significantly enhances patient treatment by customizing therapies to match individual profiles and cancer types.

By leveraging this technique to detect individual tumor cells in the bloodstream, it becomes possible to more accurately evaluate patients at various stages of cancer care, from initial diagnosis and staging to monitoring treatment responses and ongoing surveillance. This advancement could refine the personalized medicine strategy, offering a more precise alternative to current cancer cell detection methods. Following this initial success, the research team has received approval to extend their study to include blood samples from patients with a variety of cancers, beyond lung cancer, aiming to validate the effectiveness of this technique across different cancer types.

“Identifying cancer cells in blood using this technique could be a game-changer in the management of patients with cancer,” said Josep Sulé-Suso, Professor of Oncology at Keele University.

Related Links:
Keele University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.