We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Virtual Skin Biopsy Determines Presence of Cancerous Cells

By LabMedica International staff writers
Posted on 12 Apr 2024
Print article
Image: ‘Virtual biopsy’ allows clinicians to analyze skin noninvasively (Photo courtesy of Stanford Medicine)
Image: ‘Virtual biopsy’ allows clinicians to analyze skin noninvasively (Photo courtesy of Stanford Medicine)

When dermatologists spot an unusual mark on a patient's skin, they face a choice: monitor it for some time or remove it for biopsy. Similarly, when removing breast tumors, surgeons must send excised tissues to pathologists who take several days to determine if any cancerous cells remain, leading to a second surgery for removing additional cells in about 20% of cases. Pathologists process these tissues by slicing them into thin sections and staining them with hematoxylin and eosin (H&E), which enhances the visibility of cellular structures and is crucial for diagnosing cancers and other diseases. However, this method is labor-intensive and irreversible; once a biopsy is sliced in one direction, it cannot be resectioned for alternative views. Now, a "virtual biopsy" could allow dermatologists to forego the scalpel and scan the skin to check for cancerous cells without an incision. Similarly, surgeons might soon be able to determine if they have completely removed the tumor during the procedure itself by using real-time imaging instead of waiting for traditional pathology results.

Researchers at Stanford Medicine (Stanford, CA, USA) have introduced a technique that utilizes lasers to penetrate tissue and create detailed three-dimensional reconstructions of cellular structures. This method enables the production of cross-sectional images similar to those made by slicing biopsy samples, which are typically examined under a microscope. This breakthrough could allow for noninvasive skin scans and speed up the biopsy results from other tissues, potentially offering more comprehensive diagnostic information. While further development is required to bring this technology to clinical practice, the researchers are optimistic that their innovation will transform how biopsies are performed.

“We’ve not only created something that can replace the current gold-standard pathology slides for diagnosing many conditions, but we actually improved the resolution of these scans so much that we start to pick up information that would be extremely hard to see otherwise,” said Adam de la Zerda, Ph.D., an associate professor of structural biology.

Related Links:
Stanford Medicine

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.