We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

By LabMedica International staff writers
Posted on 06 May 2024
Print article
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe, but this often yields insufficient blood for many tests and can result in inaccurate laboratory values that vary between measurements. Now, researchers have developed an innovative device that uses microneedles and a suction cup instead of a large needle, which could be especially beneficial for those with needle phobia. This device can collect more blood than the traditional finger prick, enhancing the reliability of diagnostic measurements. Additionally, its low production cost makes it feasible for use in developing countries.

The new device for taking blood samples developed by researchers at ETH Zurich (Zurich, Switzerland) operates on a principle similar to that of a leech and is less invasive than traditional arm blood draws. It is user-friendly and can be operated by individuals without medical training. Although it does not gather as much blood as a conventional needle, it significantly surpasses the volume collected from a finger prick. The concept for this device emerged while the ETH researchers were developing a suction cup intended to administer medication through the mucous membranes inside the mouth, during which they studied how leeches attach to their hosts using a sucker and then draw blood.

The device mimics how leeches work: after attaching, they penetrate the skin with their teeth and create negative pressure to draw blood. Similarly, the new device features a suction cup about two and a half centimeters in diameter that adheres to the patient's upper arm or back. It houses a dozen microneedles that pierce the skin when pressed against it. Within minutes, the negative pressure collects enough blood for diagnostic testing. This cost-effective device could be especially useful in regions like sub-Saharan Africa, where it could significantly impact the fight against diseases such as malaria.

An additional safety feature of this device is that the microneedles are enclosed within the suction cup, reducing the risk of injury both during use and after disposal, unlike conventional needles. Currently, the suction cup is made of silicone, and the microneedles are steel, but the team is developing a version using fully biodegradable materials. While this device has been tested on pigs and extensive manufacturing details have been prepared, further optimization of the materials and safe use testing in humans are needed. The researchers are hopeful that their innovative device will soon be aiding the health of children and all who fear needles.

Related Links:
ETH Zurich 

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Cortisol/Cortisone Saliva Controls
MassCheck Chromsystems Saliva Controls
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.