We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Advancements Enable Leap into 3D Pathology

By LabMedica International staff writers
Posted on 10 May 2024
Print article
Image: Tripath (far right) outperforms current clinical baseline (far left) and 2D deep learning baselines (middle) in cancer recurrence risk prediction (Photo courtesy of Mass General Brigham)
Image: Tripath (far right) outperforms current clinical baseline (far left) and 2D deep learning baselines (middle) in cancer recurrence risk prediction (Photo courtesy of Mass General Brigham)

Human tissue is complex, intricate, and naturally three-dimensional. However, the thin two-dimensional tissue slices commonly used by pathologists to diagnose diseases provide only a limited view of the tissue's full complexity. As a result, there is a growing trend in pathology towards the examination of tissue in its three-dimensional form. Unfortunately, 3D pathology datasets can contain vastly more data than their 2D counterparts, rendering manual analysis impractical. Now, researchers have developed new, deep-learning models capable of utilizing 3D pathology datasets to predict clinical outcomes.

Tripath, developed by researchers from Mass General Brigham (Somerville, MA, USA) and their collaborators, aims to bridge the computational challenges of processing 3D tissue and predicting outcomes based on 3D morphological features. In their study, the team utilized two 3D high-resolution imaging techniques to capture images of curated prostate cancer specimens. These models were trained to assess the risk of prostate cancer recurrence using volumetric human tissue biopsies.

Tripath has demonstrated superior performance compared to traditional pathologists and has outperformed existing deep learning models that rely on 2D morphology and thin tissue slices, by comprehensively capturing 3D morphologies from the entire tissue volume. While further validation in larger datasets is necessary before this innovative approach can advance to clinical application, the research team remains optimistic about its potential to enhance clinical decision-making.

“Our approach underscores the importance of comprehensively analyzing the whole volume of a tissue sample for accurate patient risk prediction, which is the hallmark of the models we developed and only possible with the 3D pathology paradigm,” said lead author Andrew H. Song, PhD, of the Division of Computational Pathology in the Department of Pathology at Mass General Brigham.

Related Links:
Mass General Brigham

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Repeater Pipette
CAPPR10 Repeater Pipette
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.