We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New WHO Reporting System for Lung Cytopathology to Enhance Diagnostic Accuracy

By LabMedica International staff writers
Posted on 13 Jun 2024
Print article
Image: Diff-Quik stained smear from lung FNAB (Photo courtesy of Guoping Cai, Darin Dolezal, Ivana Kholová)
Image: Diff-Quik stained smear from lung FNAB (Photo courtesy of Guoping Cai, Darin Dolezal, Ivana Kholová)

Lung cancer continues to be the most common cause of cancer-related deaths worldwide and ranks as the second most frequently diagnosed cancer in both men and women. The role of lung cytopathology, which involves examining specimens such as sputum, bronchial brushings (BB), bronchial washings (BW), bronchoalveolar lavage (BAL), and fine needle aspiration biopsy (FNAB), is crucial for early and accurate diagnosis, thus enhancing treatment efficacy. The introduction of endobronchial ultrasound (EBUS) has significantly improved the diagnostic capabilities of FNAB by facilitating simultaneous diagnosis and staging. With the increasing significance of accurate lung tumor classification for molecular testing, there is a crucial need for the implementation of standardized terminology and reporting standards in lung cytopathology.

The World Health Organization (WHO, Geneva, Switzerland) has introduced a new reporting system designed to standardize this communication to enhance diagnostic accuracy, facilitate research, and encourage clinical trial participation. This system, the WHO Reporting System for Lung Cytopathology, developed in collaboration with the International Academy of Cytology (IAC, Freiburg im Breisgau, Germany) and the International Agency for Research on Cancer (IARC, Lyon, France), is the first of its kind aimed at standardizing the reporting of lung cytopathology specimens globally. It categorizes findings into five diagnostic categories—Insufficient/Inadequate/Non-diagnostic, Benign/Negative for Malignancy, Atypical, Suspicious for Malignancy, and Malignant. Each category is defined by specific cytomorphologic criteria, includes an estimated risk of malignancy (ROM), and offers guidelines for clinical management.

The WHO system provides specific clinical management recommendations for each diagnostic category. For instance, a diagnosis of "Malignant" often triggers further diagnostic actions such as bronchoscopy or imaging, possibly followed by EBUS- or CT-guided FNAB. Treatment may vary from surgical resection to systemic treatment, depending on the tumor's characteristics and condition of the patient. For benign results, ongoing monitoring and follow-up are generally recommended, while atypical or suspicious results may require additional testing to refine the diagnosis. The system also highlights the importance of ancillary tests like molecular and genetic testing, crucial for precise diagnoses and personalized treatment plans. These ancillary tests, including immunohistochemistry (IHC) and molecular assays, are critical for confirming diagnoses and are pivotal for identifying targeted therapies, particularly for lung adenocarcinoma and other specific cancer subtypes.

The WHO Reporting System for Lung Cytopathology is a pivotal step in achieving standardized, accurate, and effective lung cancer diagnostics. By providing distinct categories and criteria, it not only improves diagnostic consistency and patient management but also promotes ongoing research. The inclusion of ancillary testing and consideration for resource variability across different settings ensures that the system is applicable worldwide. Additionally, this standardization aids in gathering robust data for epidemiological studies and clinical trials, crucial for progressing our understanding and treatment of lung cancer. As this system becomes more widely adopted, it is expected to markedly enhance outcomes for lung cancer patients and contribute significantly to the global fight against this prevalent disease. Further refinement and research will continue to improve its clinical value and impact, maintaining its relevance in the field of lung cancer diagnostics.

Related Links:
WHO
IAC
IARC

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.