We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Automated Diagnostic Techniques to Improve Diagnosis of Inflammatory Diseases

By LabMedica International staff writers
Posted on 25 Jun 2024
Print article
Image: Cells dying by necroptosis, an inflammatory form of cell death (Photo courtesy of WEHI)
Image: Cells dying by necroptosis, an inflammatory form of cell death (Photo courtesy of WEHI)

Necroptosis, a type of cell death, is a natural mechanism through which the body eliminates unwanted or dangerous cells. This process can malfunction in some individuals, leading to diseases characterized by inflammation, commonly impacting the gut, skin, and lungs. Until now, identifying cells undergoing necroptosis in practical settings was challenging. Now, advancements in fully automated diagnostic technology, including liquid handling robots, promise significant improvements for millions of people across the world suffering from inflammatory diseases.

Researchers at the Walter and Eliza Hall Institute of Medical Research (WEHI, Victoria, Australia) have made breakthroughs in detecting necroptosis, which plays a crucial role in various inflammatory conditions such as psoriasis, arthritis, and inflammatory bowel disease. They describe their findings as an "atlas of necroptosis," mapping out cells in the body prone to necroptosis. The research involved refining over 300 different experimental setups to develop a robust set of robotic methods that accurately identify necroptosis in patients with ulcerative colitis or Crohn’s disease. These insights are vital for understanding how necroptosis contributes to different inflammatory disorders and indicate that the condition is triggered by factors like inflammation, bacterial shifts, or immune disturbances.

These discoveries are vital for enhancing the diagnosis of necroptosis, potentially leading to improved and personalized treatments for numerous inflammatory ailments. A key aim of this research was to devise a replicable solution applicable in both lab and clinical environments. The methodologies established provide reproducible techniques that hospitals worldwide can adopt, offering new avenues for treating inflammatory diseases. This development of automated methods to detect necroptosis is just the start, as the researchers intend to apply their methods to study other gastrointestinal disorders such as celiac disease and various inflammatory conditions affecting the skin, lungs, and kidneys.

“We can now confidently visualize where and when necroptotic cell death can happen in the body,” said study co-leader and WEHI Inflammation division head, Professor James Murphy. "Most importantly, researchers and clinicians around the world will now be able to use these new methods, especially as liquid handling robots for immunostaining are common in hospitals and pathology departments worldwide. The next phase is to use these robotic methods to advance our understanding of which diseases could benefit from medicines that block necroptosis."

Related Links:
WEHI

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The proposed self-powered, millifluidic lab-on-a-chip device to determine blood conductivity (Photo courtesy of Advanced Materials/DOI: 10.1002/adma.202403568)

First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring

Metabolic disorders such as diabetes and osteoporosis are rapidly increasing globally, especially in developing countries. Diagnosing these conditions generally requires blood tests; however, in remote... Read more

Molecular Diagnostics

view channel
Image: The U.S. FDA has granted marketing authorization for the Xpert HCV test together with the GeneXpert Xpress System (Photo courtesy of Cepheid)

First POC Hepatitis C RNA Test Enables Single-Visit Testing and Treatment

Hepatitis C, a liver infection caused by the hepatitis C virus (HCV), spreads through contact with the blood of an infected person. While some individuals may experience a short-term illness, over half... Read more

Hematology

view channel
Image: The new Yumizen H550E (autoloader), H500E CT (closed tube), and Yumizen H500E OT (open tube) (Photo courtesy of HORIBA)

New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds

HORIBA (Kyoto, Japan) has expanded its line of compact hematology analyzers by introducing new models that incorporate Erythrocyte Sedimentation Rate (ESR) measurement capabilities. The newly launched... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.