We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel AI-Based Analysis Method Uncovers New Insight into ALS Progression

By LabMedica International staff writers
Posted on 02 Jul 2024
Print article
Image: Spinal cord neurons (Photo courtesy of University of St Andrews)
Image: Spinal cord neurons (Photo courtesy of University of St Andrews)

Amyotrophic Lateral Sclerosis (ALS) is a fatal condition where motor neurons, which are crucial for controlling movement, progressively die. Currently, there is no cure for ALS, and patients typically live between 2 and 5 years after diagnosis. Now, in a new study published in Science Advances, researchers have shown how to leverage artificial intelligence (AI) to gain deeper insights into ALS progression.

The study, led by researchers from the School of Psychology and Neuroscience at the University of St Andrews (Scotland, UK), in collaboration with the Department of Neuroscience, University of Copenhagen (Copenhagen, Denmark), found that certain neural circuits that control movement are compromised early in the disease, while others deteriorate later as the disease progresses. The techniques used in the study allow for the simultaneous analysis of multiple cell types within the spinal cord, enhanced by an innovative AI-driven analytical method. This enabled the identification of specific networks of cells that are impacted early in the disease process before the motor neurons actually die. These networks include subgroups of inhibitory interneurons, which are essential for activating motor neurons that control movements like walking and running.

The findings indicate that different types of cells, namely inhibitory and excitatory interneurons which regulate various movement aspects by activating motor neurons, are affected at different stages of ALS. Inhibitory interneurons are impacted early in the disease, while excitatory interneurons suffer as the disease progresses. The AI-based method developed by the team improves the quantification of this data. Their approach uses advanced techniques to identify which cell types are key contributors to the disease. These cells are notably diverse and mixed within the spinal cord, making them challenging to study simultaneously. The AI model developed by the team helps overcome these challenges and sheds light on new potential treatment targets. This methodology is available online, aiming to support further research in this field.

“We used techniques that allow us to visualize and quantify multiple genes at the same time with single cell resolution in the spinal cord of the ALS mouse model”, said lead researcher Dr Ilary Allodi, lecturer in Systems Neuroscience at the School of Psychology and Neuroscience. “Each cell type can be identified by a specific set of genes, but these genes need to be visualized simultaneously. By using these transcriptomic techniques, we were able to differentiate between inhibitory and excitatory populations and among their subpopulations. This allowed us to investigate their fate during different stages of disease progression.”

Related Links:
University of St Andrews
University of Copenhagen

New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
C-Terminal Telopeptide ELISA
Urine BETA CrossLaps (CTX-I) ELISA
New
Flu Test
Influenza A/B Virus Detection Kit

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.