Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Combines Data from Medical Images with Text to Predict Cancer Prognoses

By LabMedica International staff writers
Posted on 10 Jan 2025

The integration of visual data (such as microscopic and X-ray images, CT and MRI scans) with textual information (like exam notes and communications between doctors of different specialties) is a crucial aspect of cancer care. While artificial intelligence (AI) tools have been increasingly employed in clinical settings, their primary application has been in diagnostics rather than prognosis. AI aids doctors in reviewing images and detecting disease-related anomalies, such as abnormally shaped cells, but developing computerized models that can combine various types of data has been a challenge. One of the difficulties is the need to train these models with large amounts of labeled and paired data, like a microscope slide showing a cancerous tumor alongside the clinical notes of the patient from whom the tumor was obtained. However, curated and annotated datasets are often scarce. Researchers have now developed an AI model capable of integrating both visual and textual data. After training on 50 million medical images of standard pathology slides and more than 1 billion pathology-related texts, the model surpassed traditional methods in its ability to predict the prognoses of thousands of cancer patients, identify individuals with lung or gastroesophageal cancers likely to benefit from immunotherapy and pinpoint melanoma patients most at risk of experiencing a recurrence.

The model, named MUSK (multimodal transformer with unified mask modeling), was developed by researchers at Stanford Medicine (Stanford, CA, USA). MUSK marks a significant departure from the typical use of AI in clinical settings, and the researchers believe it has the potential to transform how AI can guide patient care. In AI terminology, MUSK is considered a foundation model. Foundation models, which are pretrained on large datasets, can be further fine-tuned with additional training to handle specific tasks. Since MUSK was designed to utilize unpaired multimodal data that does not meet the traditional requirements for training AI, it can leverage a much larger pool of data for its initial learning phase. As a result, subsequent training only requires smaller, more specialized datasets. Essentially, MUSK is a ready-to-use tool that doctors can customize to answer specific clinical questions.

To develop MUSK, the researchers gathered microscopic tissue slides, pathology reports, and follow-up data (including patient outcomes) from The Cancer Genome Atlas, a national database, for individuals with 16 major cancer types, such as breast, lung, colorectal, pancreatic, kidney, bladder, and head and neck cancers. This data was used to train MUSK to predict disease-specific survival or the percentage of patients who have not died from a specific disease within a given time frame. According to the study, published in Nature, MUSK accurately predicted disease-specific survival for all cancer types 75% of the time. In comparison, traditional predictions based on a person’s cancer stage and other clinical risk factors were correct 64% of the time. In another example, MUSK was trained to analyze extensive data to predict which patients with lung cancer or cancers of the gastric and esophageal tracts are most likely to benefit from immunotherapy.

For non-small cell lung cancer, MUSK identified patients who responded well to immunotherapy approximately 77% of the time. In contrast, the conventional method of predicting immunotherapy response based on PD-L1 expression was correct only 61% of the time. Similarly, when the researchers trained MUSK to identify melanoma patients at high risk of relapse within five years after initial treatment, the model was accurate about 83% of the time, which is roughly 12% more accurate than other foundation models.

“MUSK can accurately predict the prognoses of people with many different kinds and stages of cancer,” said Ruijiang Li, MD, an associate professor of radiation oncology. “We designed MUSK because, in clinical practice, physicians never rely on just one type of data to make clinical decisions. We wanted to leverage multiple types of data to gain more insight and get more precise predictions about patient outcomes.”

“What’s unique about MUSK is the ability to incorporate unpaired multimodal data into pretraining, which substantially increases the scale of data compared with paired data required by other models,” added Li.

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunoassays and Calibrators
QMS Tacrolimus Immunoassays
New
Biological Indicator Vials
BI-O.K.
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.