We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pioneering Microscopy Technique Improves Diagnosis of Glioblastoma Brain Tumors

By LabMedica International staff writers
Posted on 16 Oct 2024
Print article
Image: A glioblastoma tumor cell (green) present in the white matter (blue) near a blood vessel (red), visualized via the novel three-photon microscopy workflow Deep3P (Photo courtesy of EMBL/Heidelberg University)
Image: A glioblastoma tumor cell (green) present in the white matter (blue) near a blood vessel (red), visualized via the novel three-photon microscopy workflow Deep3P (Photo courtesy of EMBL/Heidelberg University)

Along the brain’s largest nerve fiber highway, known as the corpus callosum, travel cells that form one of the most lethal brain cancers, glioblastomas. Now, scientists have developed a cellular detector by integrating artificial intelligence (AI) with a cutting-edge microscope, enabling them to visualize and monitor specific cells with unprecedented clarity in deep brain tissue, including along this superhighway. The researchers believe that understanding the early ‘traffic patterns’ of cancer cells along the corpus callosum could aid in establishing a biomarker for the earlier detection of glioblastomas in patients, potentially enhancing future diagnostic tools.

This collaborative endeavor between EMBL (Heidelberg, Germany) and Heidelberg University (Heidelberg, Germany) builds upon a new microscopy technique developed by EMBL researchers in 2021 in association with colleagues from Germany, Austria, Argentina, China, France, the United States, India, and Jordan. The EMBL team worked with these diverse partners to tackle some of the challenges neuroscientists encounter when studying deep brain regions. Previously, the diffuse nature of brain tissue made it challenging for scientists to observe neurons and glial cells, such as astrocytes, and to investigate their communication within the cortex. This difficulty extended to visualizing neural cells in the hippocampus, another deep brain area critical for spatial memory and navigation. The researchers' new method utilized advanced microscopy techniques that offered a broader and clearer view while compensating for the distortion caused by scattered light waves in deep brain tissue.

Now, in a study published in the journal Nature Communications, the EMBL researchers collaborated with neuroscientists, neurooncologists, and AI specialists to enhance this microscope further. The outcome is a device capable of observing living neurons and other brain cell types deep within the brain over extended periods. Glioblastomas are predominantly a white-matter disease. The new advanced imaging technique allowed the team to study these tumor cells within their microenvironment in the white matter. This capability was vital for understanding how tumor cells invade the densely myelinated (insulated) fiber “lanes” of the corpus callosum and subsequently adapt and spread throughout the brain. This invasion is also linked to the critical structures of the brain that glioblastomas invade in a lethal manner.

A key aspect of this recent collaboration was the integration of AI, which helped to reduce noise in the images, resulting in much clearer contrast. The AI can differentiate various structures within the white matter, such as myelinated fibers and blood vessels, which is significant for multiple reasons. A tailored workflow enabled the researchers to separate blood vessel signals from those of the myelinated neural fibers, clarifying the microenvironment of the tumor cells. As a result, the researchers identified a potential microscopic imaging biomarker associated with the structural characteristics of the white matter microenvironment. This innovative workflow paves the way for identifying imaging patterns for glioblastomas, allowing for earlier detection than currently possible. Their next steps involve integrating additional advanced imaging modalities to create practical tools for standard clinical applications.

“These findings also help explain the current challenges in detecting glioblastoma cells at the tumor’s infiltrative edges using conventional MRI techniques, which are the standard in clinical imaging,” said Varun Venkataramani at the Neurology Clinic of the University Hospital Heidelberg. “As a neuroscientist, neurologist, and neurooncologist, I see potential for this technology to bridge the gap between laboratory research and clinical application, improving how we could diagnose and potentially treat brain tumors.”

 

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Gold Member
Troponin T QC
Troponin T Quality Control
New
Hematology Analyzer
XS-500i
New
Adenovirus Test
S3334E ADV Adenovirus Kit

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.