We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

By LabMedica International staff writers
Posted on 05 Nov 2024
Print article
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI models requires large datasets, which are typically abundant for common diseases. The real challenge lies in accurately detecting rarer diseases, which many current AI models tend to overlook or misclassify. Researchers have now created a new AI tool designed to utilize imaging data to identify less common gastrointestinal tract diseases effectively.

Developed by scientists at Ludwig Maximilian University of Munich (Munich, Germany) and their collaborators, this innovative model only requires training data from frequently observed conditions to reliably detect rarer diseases. This advancement has the potential to enhance diagnostic accuracy and alleviate the workloads of pathologists in the future. As reported in the New England Journal of Medicine AI (NEJM AI), the new technique is founded on anomaly detection. The model learns to identify and highlight deviations from the precise characterization of normal tissues and findings from common diseases, without the need for specific training on these less frequent cases. The researchers utilized a dataset of 17 million histological images from 5,423 cases for training and evaluation.

In their research, the team gathered two extensive datasets of microscopic images from gastrointestinal biopsy tissue sections, along with their corresponding diagnoses. In these datasets, the ten most common findings—including normal observations and prevalent diseases such as chronic gastritis—constituted approximately 90% of cases, while the remaining 10% encompassed 56 different disease entities, including various cancers. Additionally, the AI model employs heatmaps to visually indicate the location of anomalies within the tissue section. By distinguishing normal findings and common diseases while detecting anomalies, the AI model is poised to offer crucial support to healthcare professionals. Although the identified diseases still require validation by pathologists, this AI tool can significantly reduce diagnostic time, as it enables automatic diagnosis of normal findings and a portion of diseases.

“We compared various technical approaches and our best model detected with a high degree of reliability a broad range of rarer pathologies of the stomach and colon, including rare primary or metastasizing cancers. To our knowledge, no other published AI tool is capable of doing this,” said Professor Frederick Klauschen, Director of the Institute of Pathology at LMU.

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Vaginal pH Screening Kit
Vaginal pH Screening Kit
New
Entamoeba Test
RIDASCREEN Entamoeba Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The study explored how emerging plasma biomarkers are related to the diagnostic tests currently used in clinical routines (Photo courtesy of Shutterstock)

Study Offers New Insights into Alzheimer's Disease Biomarkers

As of November 14, 2024, the European Medicines Agency (EMA) has recommended, for the first time, a drug aimed at slowing the progression of Alzheimer's disease (AD). This marks a significant milestone... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.