We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

By LabMedica International staff writers
Posted on 05 Nov 2024
Print article
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI models requires large datasets, which are typically abundant for common diseases. The real challenge lies in accurately detecting rarer diseases, which many current AI models tend to overlook or misclassify. Researchers have now created a new AI tool designed to utilize imaging data to identify less common gastrointestinal tract diseases effectively.

Developed by scientists at Ludwig Maximilian University of Munich (Munich, Germany) and their collaborators, this innovative model only requires training data from frequently observed conditions to reliably detect rarer diseases. This advancement has the potential to enhance diagnostic accuracy and alleviate the workloads of pathologists in the future. As reported in the New England Journal of Medicine AI (NEJM AI), the new technique is founded on anomaly detection. The model learns to identify and highlight deviations from the precise characterization of normal tissues and findings from common diseases, without the need for specific training on these less frequent cases. The researchers utilized a dataset of 17 million histological images from 5,423 cases for training and evaluation.

In their research, the team gathered two extensive datasets of microscopic images from gastrointestinal biopsy tissue sections, along with their corresponding diagnoses. In these datasets, the ten most common findings—including normal observations and prevalent diseases such as chronic gastritis—constituted approximately 90% of cases, while the remaining 10% encompassed 56 different disease entities, including various cancers. Additionally, the AI model employs heatmaps to visually indicate the location of anomalies within the tissue section. By distinguishing normal findings and common diseases while detecting anomalies, the AI model is poised to offer crucial support to healthcare professionals. Although the identified diseases still require validation by pathologists, this AI tool can significantly reduce diagnostic time, as it enables automatic diagnosis of normal findings and a portion of diseases.

“We compared various technical approaches and our best model detected with a high degree of reliability a broad range of rarer pathologies of the stomach and colon, including rare primary or metastasizing cancers. To our knowledge, no other published AI tool is capable of doing this,” said Professor Frederick Klauschen, Director of the Institute of Pathology at LMU.

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Repeater Pipette
CAPPR10 Repeater Pipette
New
Urine cfDNA Extraction Kit
CloNext Urine cfDNA Extraction Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.