We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Electronic Diagnostic Model Predicts Acute Interstitial Nephritis in Patients

By LabMedica International staff writers
Posted on 15 Nov 2024
Print article
Image: The study used a new electronic diagnostic model as an alternative to kidney biopsies to predict AIN (Photo courtesy of 123RF)
Image: The study used a new electronic diagnostic model as an alternative to kidney biopsies to predict AIN (Photo courtesy of 123RF)

Acute interstitial nephritis (AIN) is a frequent cause of acute kidney injury (AKI), characterized by inflammation and swelling of certain kidney tissues. It is typically associated with the use of medications such as steroids, proton pump inhibitors, and antibiotics. Studies show that AKI, which involves a sudden decline in kidney function, affects about 20% of hospitalized patients. One of the key challenges in managing AKI is distinguishing AIN from other causes of kidney injury. This is complicated by the fact that over 90% of AIN patients show no obvious symptoms, and common diagnostic methods, including urine eosinophil counts, urine microscopy, and imaging tests, have poor accuracy. Misdiagnosing AIN can result in the premature discontinuation of essential treatments like immune checkpoint inhibitors or antibiotics, potentially leading to permanent kidney damage if the condition is not promptly identified. Given the difficulty of diagnosing AIN, a kidney biopsy is often required, though it is an invasive procedure with its own risks. To address this challenge, researchers have developed a diagnostic model using lab tests from electronic medical records, which could significantly improve early detection of AIN in patients.

In the study, researchers from Johns Hopkins Medicine (Baltimore, MD, USA) and Yale University (New Haven, CT, USA) developed a diagnostic model to predict AIN in patients using a machine learning technique called least absolute shrinkage and selection operator (LASSO). The laboratory tests used in the model included serum creatinine, blood urea nitrogen (BUN), urine protein levels, and urine specific gravity (the density of urine compared to water). The study involved two patient cohorts, both of which had previously undergone kidney biopsies at Johns Hopkins Hospital (JHH) or Yale University. The JHH cohort consisted of 1,454 patients who had a native kidney biopsy between January 2019 and December 2022, while the Yale cohort included 528 patients scheduled for clinical kidney biopsy between July 2020 and June 2023. Patients who did not have a serum creatinine value within a year before their biopsy, were undergoing kidney allograft biopsies, or had known vasculitis or lupus nephritis were excluded from the study.

A total of 1,982 patients were analyzed, with 22% diagnosed with AIN. The study found that patients with AIN were more likely to be hospitalized and had higher serum creatinine levels and a higher blood urea nitrogen-to-creatinine ratio. The diagnostic model improved the accuracy of AIN diagnosis to 77%. However, there were differences in the prevalence of AIN between the two cohorts. After adjusting for prevalence at the individual centers, the model's calibration improved significantly, leading to more accurate diagnoses. The findings, published in the Journal of the American Society of Nephrology, suggest that this diagnostic model could assist clinicians in determining whether a kidney biopsy is necessary in patients with AKI and help guide treatment decisions for AIN. The formula for predicting AIN is available on MDCalc.

Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Centrifuge
Mikro 200
New
Syphilis Infection Test
IMPACT RPR

Print article

Channels

Microbiology

view channel
Image

POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord. Pathogens typically enter the body through the respiratory tract and spread via the bloodstream. The infection can... Read more

Pathology

view channel
Image: The unique AI tool predicts cancer prognoses and responses to treatment (Photo courtesy of Shutterstock)

AI Tool Combines Data from Medical Images with Text to Predict Cancer Prognoses

The integration of visual data (such as microscopic and X-ray images, CT and MRI scans) with textual information (like exam notes and communications between doctors of different specialties) is a crucial... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The investment is in line with Danaher’s aim to accelerate the transition to precision medicine with AI-enabled diagnostics

Danaher Partners with Healthcare AI Company Innovaccer on Novel Digital and Diagnostic Solutions

Danaher Diagnostics LLC and Danaher Ventures LLC, two subsidiaries of Danaher Corporation (Washington, DC, USA), has formed an investment partnership with healthcare artificial intelligence (AI) company... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.