We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Can Rapidly Detect Infection Risk

By LabMedica International staff writers
Posted on 11 Dec 2013
A device has been created that is able to detect a person's risk of infection from a drop of blood within minutes, as opposed to current methods, which can take up to two hours.

Neutrophil chemotaxis is critical for defense against infections and its alterations could lead to chronic inflammation and tissue injury and the central role that transient alterations of neutrophil chemotaxis could have on patient outcomes calls for its quantification in the laboratory.

Scientists at the Massachusetts General Hospital (Boston, MA, USA) designed a microfluidic device to study neutrophil chemotaxis from a single droplet of whole blood, which has three main components: a chemokine side chambers (200 × 200 μm), a central whole-blood loading chamber, and migration channels containing red blood cell (RBC) filtering regions.

The filter for each migration channel consists of 10 short channels (length about 75 μm) connected horizontally through an approximately 200-μm-long channel to create 90 degree bending sections capable of trapping the RBCs in order to prevent them from dispersing into the rest of the migration channel. A gradient of the chemoattractant is established along the migration channels by diffusion between the chemoattractant chambers and the central loading chamber.

The assay was validated by comparing neutrophil chemotaxis from finger prick, venous blood and purified neutrophil samples. There was a consistent average velocity of 19 ± 6 μm/minute and directionality of 91.1% between the three sources. The team quantified the variability in neutrophil chemotaxis between healthy donors and found no significant changes over time. The novel whole blood device was also used to monitor neutrophil chemotaxis function in a patient with 24% total body surface area burns over a three-week treatment period.

Daniel Irmia, MD, PhD, an assistant professor at the BioMicro Electrical Mechanical Systems Resource Center (BioMEMS; Boston, MA, USA) and a senior author of the study said, “In many cases, it may not be enough to just count the neutrophils. If neutrophils do not migrate well and cannot reach inside the tissues, this situation could have the same consequences as a low neutrophil count.” The authors concluded that being able to measure patients' risk of infections in a matter of minutes from only a droplet of blood is a significant development and one that will improve current treatment. The study was published on October 2, 2013, in the journal Technology.

Related Links:

Massachusetts General Hospital
BioMEMS Resource Center 



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Centrifuge
Hematocrit Centrifuge 7511M4
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.