We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Analysis of Circulating Free DNA May Replace Tumor Biopsy for Detection of Non-Small-Cell Lung Cancer

By LabMedica International staff writers
Posted on 10 Mar 2015
Print article
Image: Erlotinib bound to EGRF at 0.26 nm resolution; surface color indicates hydrophobicity (Photo courtesy of Wikimedia Commons).
Image: Erlotinib bound to EGRF at 0.26 nm resolution; surface color indicates hydrophobicity (Photo courtesy of Wikimedia Commons).
A recent paper showed that analysis of circulating free DNA (cfDNA) in blood samples could replace biopsy as a means for detecting patients with advanced non-small-cell lung cancer (NSCLC) that was distinguished by oncogenic epidermal growth factor receptor (EGFR) mutations.

This study was an extension of the 2007-2011 EURTAC (EURopean TArceva vs. Chemotherapy) trial. EURTAC demonstrated the efficacy of erlotinib (Tarceva) compared with standard chemotherapy for the first-line treatment of European patients with advanced NSCLC with oncogenic EGFR mutations (exon 19 deletion or L858R mutations in exon 21) in tumor tissue.

Erlotinib is an epidermal growth factor receptor (EGFR) inhibitor that specifically targets the EGFR tyrosine kinase, which is highly expressed and occasionally mutated in various forms of cancer. It binds in a reversible fashion to the adenosine triphosphate (ATP) binding site of the receptor. For the signal to be transmitted, two EGFR molecules need to come together to form a homodimer. These then use the molecule of ATP to trans-phosphorylate each other on tyrosine residues, which generates phosphotyrosine residues, recruiting the phosphotyrosine-binding proteins to EGFR to assemble protein complexes that transduce signal cascades to the nucleus or activate other cellular biochemical processes. By inhibiting the ATP, formation of phosphotyrosine residues in EGFR is not possible and the signal cascades are not initiated.

In the current study researchers associated with the Spanish Lung Cancer Group examined the feasibility of using circulating free DNA (cfDNA) from blood samples of patients with advanced non-small-cell lung cancer as a replacement for tumor biopsies. To this end they used a novel peptide nucleic acid (PNA)–mediated 5´ nuclease real-time polymerase chain reaction (PCR) (TaqMan) assay to examine EGFR mutations in cfDNA isolated from 97 baseline blood samples obtained from patients that had participated in the EURTAC trial.

Results revealed that cfDNA EGFR mutations were detected in 76 of 97 samples (78%) from the patients. Median overall survival was shorter in patients with the L858R mutation in cfDNA than in those with the exon 19 deletion (13.7 versus 30 months). For the 76 patients with EGFR mutations in cfDNA, only erlotinib treatment was an independent predictor of longer disease progression-free survival.

Senior author Dr. Rafael Rosell, professor of medical oncology at the Hospital Germans Trias I Pujol (Badalona, Spain) said, "Testing of tumor tissue remains the recommended method for detecting the presence of oncogenic EGFR mutations; however, the amount of tumor tissue obtained by biopsy is often insufficient, especially in advanced NSCLC, raising the question of whether cfDNA may be used as a surrogate liquid biopsy for the noninvasive assessment of EGFR mutations."

The study was published in the February 26, 2015, online edition of JAMA Oncology.

Related Links:

Hospital Germans Trias i Pujol


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.