We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Typhoid Fever Bacteria Sequencing Reveals Drug Resistance Genes

By LabMedica International staff writers
Posted on 21 Mar 2018
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype.

A typhoid fever outbreak emerged in Pakistan in November 2016, with a number of cases, especially in Sindh Province, resistant to ceftriaxone, a third-generation cephalosporin, and to the first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole.

Scientists collaborating with the Wellcome Trust Sanger Institute (Hinxton, UK) sequenced 80 S. enterica serovar Typhi isolates from this outbreak to find that they harbored resistance genes that are embedded both in chromosomal regions and on a plasmid. The plasmid conferring fluoroquinolone resistance appears to have been acquired from Escherichia coli.

The investigators used the HiSeq 2500 platform to sequence 87 isolates, mostly from Hyderabad and Karachi, that exhibited a pattern of being extensively drug resistant (XDR). For one sample, the team also generated a complete genome using a combination of Oxford Nanopore and Pacific Biosciences long-read sequencing approaches. The final assembled genome was 4.73 million base pairs in length with an 84,492-base-pair long plasmid. At the same time, they analyzed 12 isolates that were susceptible to ceftriaxone. All the XDR and 11 of the 12 ceftriaxone-susceptible samples belong to the S. Typhi H58 clade.

Further phylogenetic analysis with these and additional H58 strains indicated that the XDR samples and four of the ceftriaxone-susceptible samples belonged to their own branch, which was separated other members of the clade by 17 single nucleotide polymorphisms (SNPs), six of which were specific to the XDR samples. By combing through the samples' genomes for antibiotic resistance genes, they found that the XDR isolates contained a transposon, which has been observed previously in multidrug-resistant H58 strains. Genes within the transposon provide resistance to chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, and streptomycin.

Gordon Dougan, PhD, FMedSci, FRS, a professor and senior author of the study, said, “We have used genetic sequencing to uncover how this particular strain of typhoid became resistant to several key antibiotics. Sporadic cases of typhoid with these levels of antimicrobial resistance have been seen before, but this is the first time we've seen an ongoing outbreak, which is concerning.” The study was published on February 20, 2018, in the journal mBIO.

Related Links:
Wellcome Trust Sanger Institute


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.