We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metagenomics Uncover Pathogens and Drug-Resistance Genes

By LabMedica International staff writers
Posted on 26 Jun 2018
Metagenomics, and even metatranscriptomics, are enabling clinicians and scientists to tease out pathogens from an assortment of microbes. Scientists are beginning to show that metagenomics can pick up the same microbes that culturing does and may even spot ones missed by culturing.

At the same time, metagenomic sequencing can capture which antibiotic resistance genes a sample may harbor, and metatranscriptomics is beginning to give investigators a glimpse into RNA viruses as well as which genes are actually transcribed.

Scientists at Geneva University Hospital (Geneva, Switzerland) used metagenomics to identify suspected infections in a case from 2012 in which a 29-year-old Portuguese woman was found to have an abscess. While her sample tested negative for pathogens by culture and quantitative polymerase chain reaction (qPCR), the source of the infection was suspected to be Brucella. The patient returned four years later with the same symptoms, and once again had negative results by culture and qPCR. With metagenomic sequencing of a liver sample, part of which the patient had removed to treat the liver abscess, the scientists were able to uncover a handful of Brucella reads, at a ratio of one Brucella read per 43,000 human reads, which were not present in the controls, suggesting it was the source of her infection.

Scientists at the Mayo Clinic (Rochester, MN, USA) used metagenomic sequencing to uncover pathogens in patients with infections affecting prosthetic joints. They collected synovial fluid from 168 failed total knee replacements, which they both cultured and subjected to metagenomic sequencing. Metagenomic sequencing homed in on the same pathogen in 73 of the 82 culture-positive cases analyzed. At the same time, it uncovered potential pathogens in four of the culture-negative cases. This suggests shotgun metagenomic sequencing could be useful for identifying pathogens, even in cases where culturing could not.

At Johns Hopkins University (Baltimore, MD, USA) scientists have been exploring the use of both short-read and nanopore sequencing to detect antimicrobial resistance genes. They describe the case of a 64-year-old woman who developed sepsis following a liver transplant and who was started on vancomycin and meropenem. Blood cultures then indicated she was positive for Klebsiella pneumoniae, and the samples were sent for further antimicrobial susceptibility testing. They state that if metagenomic-based approach been applied first, they could have predicted the bacteria's phenotype some 20 hours sooner and prevented the need for additional testing. In a further study of resistant and susceptible K. pneumoniae, they found that nanopore sequencing with direct read mapping could uncover bacterial resistance within a few hours. These studies were presented at the American Society for Microbiology (ASM) Microbe 2018 meeting held June 7-11, 2018, in Atlanta, GA, USA.

Related Links:
Geneva University Hospital
Mayo Clinic
Johns Hopkins University


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.